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ABSTRACT OF DISSERTATION

AUTOMATED NETWORK SECURITY WITH EXCEPTIONS USING SDN

Campus networks have recently experienced a proliferation of devices ranging from
personal use devices (e.g. smartphones, laptops, tablets), to special-purpose network
equipment (e.g. firewalls, network address translation boxes, network caches, load
balancers, virtual private network servers, and authentication servers), as well as
special-purpose systems (badge readers, IP phones, cameras, location trackers, etc.).
To establish directives and regulations regarding the ways in which these heteroge-
neous systems are allowed to interact with each other and the network infrastructure,
organizations typically appoint policy writing committees (PWCs) to create accept-
able use policy (AUP) documents describing the rules and behavioral guidelines that
all campus network interactions must abide by.

While users are the audience for AUP documents produced by an organiza-
tion’s PWC, network administrators are the responsible party enforcing the contents
of such policies using low-level CLI instructions and configuration files that are typi-
cally difficult to understand and are almost impossible to show that they do, in fact,
enforce the AUPs. In other words, mapping the contents of imprecise unstructured
sentences into technical configurations is a challenging task that relies on the inter-
pretation and expertise of the network operator carrying out the policy enforcement.
Moreover, there are multiple places where policy enforcement can take place. For ex-
ample, policies governing servers (e.g. web, mail, and file servers) are often encoded
into the server’s configuration files. However, from a security perspective, conflating
policy enforcement with server configuration is a dangerous practice because minor
server misconfigurations could open up avenues for security exploits. On the other
hand, policies that are enforced in the network tend to rarely change over time and are
often based on one-size-fits-all policies that can severely limit the fast-paced dynamics
of emerging research workflows found in campus networks.

This dissertation addresses the above problems by leveraging recent advances
in Software-Defined Networking (SDN) to support systems that enable novel in-
network approaches developed to support an organization’s network security policies.
Namely, we introduce PoLanCO, a human-readable yet technically-precise policy lan-
guage that serves as a middle-ground between the imprecise statements found in AUPs
and the technical low-level mechanisms used to implement them. Real-world examples
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show that PoLanCO is capable of implementing a wide range of policies found in cam-
pus networks. In addition, we also present the concept of Network Security Caps, an
enforcement layer that separates server/device functionality from policy enforcement.
A Network Security Cap intercepts packets coming from, and going to, servers and
ensures policy compliance before allowing network devices to process packets using
the traditional forwarding mechanisms. Lastly, we propose the on-demand security
exceptions model to cope with the dynamics of emerging research workflows that are
not suited for a one-size-fits-all security approach. In the proposed model, network
users and providers establish trust relationships that can be used to temporarily by-
pass the policy compliance checks applied to general-purpose traffic – typically by
network appliances that perform Deep Packet Inspection, thereby creating network
bottlenecks. We describe the components of a prototype exception system as well
as experiments showing that through short-lived exceptions researchers can realize
significant improvements for their special-purpose traffic.

KEYWORDS: Software-Defined Networking, Network Security, Policy Enforcement,
Security Exceptions

Students’s signature: Sergio A. Rivera Polanco

Date: August 1, 2019
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Chapter 1. Introduction

Networks provide a wide variety of services needed by a diverse set of environments

that include (but are not limited to) enterprise and business operations (e.g. credit

card transactions, employee travel bookings, and payroll information access), aca-

demic and research workflows (e.g. big data transmission and analysis, virtual and

in-class online instruction), healthcare and medical procedures (e.g. patient data ac-

cess, medical procedures, virtual doctor visits), or housing affairs (e.g. residential

network connectivity, and rent payments). Moreover, networks, consisting of routers,

switches, Wireless Access Points (WAPs) and middleboxes (e.g. firewalls, load bal-

ancers), must interconnect a wide range of devices, including (but not limited to)

general-purpose machines like computer desktops and servers; hundreds of personal

and corporate mobile devices, for example, phones, laptops, tablets, or smartwatches;

appliances that provide monitoring and threat detection; and various kinds of spe-

cialized devices deployed at key places over the physical campus that include copiers

and printers, badge and biometric readers, intelligent thermostats, motion sensors,

IP telephones, surveillance cameras, video-conferencing equipment, or payment ter-

minals, to name a few.

All these devices generate varying types and amounts of network traffic that in

one way or another use a part of the underlying network infrastructure. For example,

security cameras may generate live streaming data (video/images) to a backup storage

system for easy retrieval of images from previous days, payment terminals might send

encrypted requests to external credit card franchise systems to check the validity of

debit/credit cards, Information Technology (IT) staff could configure printers to only

accept printing jobs from members of a particular department or a group of machines,

or Intrusion Detection Systems (IDSs) may generate alerts to IT monitoring systems

1
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that in turn might send control messages to a number of devices to mitigate malicious

or uncommon network activity.

The heterogeneity of campus networks has led organizations 1 to appoint spe-

cialized committees that define and establish directives and detailed guidelines re-

garding the desired and acceptable use of organization’s network. In particular, the

directives and guidelines are often referred to as rules because they describe how

devices should operate and communicate between each other (if at all) in terms of

who gets to send (or receive) what, when, where and how. A set of rules is usually

referred to as Network Policy that addresses a wide range of decisions that must be

made about the network. For example, network security policies might define the

standards for communications between any two systems in the campus network in

an attempt to minimize damaging actions like the theft of trade secrets, alteration

of data and services, or removal of intellectual property, among others. Even in the

absence of malicious actors and cyberattacks, policies are still needed to describe

acceptable use behaviors (also known as Acceptable Use Policy (AUP)) and inter-

actions within the network. Network policies also determine how communications

within the network should be distributed such that all network devices share the

network infrastructure fairly and optimally while aligning with the institution’s ob-

jectives. Moreover, policies are used to define permissions, prohibited behavior, and

the obligations of users and systems based on the organization’s hierarchy, personnel

expertise/roles, and the services provided.

Policies are of the utmost importance to organizations because they are tightly

associated to business objectives, internal processes and workflows, and federal obli-

gations. Unfortunately, technically precise documents describing such policies are

either non-existent or scarce at best. Often the only available policy documents were

written by Policy Writing Committees (PWCs) in the form of acceptable use and

1The terms organization, enterprise, and institution, will be used interchangeably throughout
the dissertation.

2
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Figure 1.1: A human configuring several devices to enforce multiple Acceptable Use
Policies (AUPs)

behavioral guidelines that contain a series of imprecise statements. The statements

use a high-level, non-technical language that focuses on organizational procedures

and workflows that can be easily understood by network users, board members, and

regulatory agencies and fall far short of providing technical information about the

actual enforcement of the policy. Hence, mapping vague non-technical statements

(understandable by humans) into low-level technical commands and configurations

(understandable by machines and network devices) in order to enforce policies is a

challenging task. The mapping process requires per-device intervention and heavily

relies on the AUP interpretation and expertise of the network operator (or server ad-

ministrator) in charge of configuring the network system (see Fig. 1.1). Furthermore,

the task is error-prone because it involves the management of heterogeneous policy

enforcement mechanisms that provide different (possibly conflicting) requirements of

the network infrastructure. For example, some mechanisms offer protection of the net-

work border against incoming connections, some allow separation of traffic between

groups of users, others authenticate individual users for privileged access to network

resources, and still others configure services with custom security. Generally, enforce-
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ment mechanisms come with so-called “sane” defaults that do not always align with

the organizations’ objectives and policies. For example, when users/operators config-

ure, say, a new website or any other service (e.g. mail services, file servers, firewalls,

and IDSs), often a default configuration file is provided in case the user/operator just

wants the service/appliance to work out-of-the-box. Moreover, by relying on default

configuration files, policy enforcement and device/service configuration are conflated

in one place (the service/application), potentially leading to policy violations. Fur-

thermore, current enforcement mechanisms are rigid and meant to be in place for

large timescales. As a result, policy implementations are rarely dynamic and are

usually revised, at best, a couple of times per year. While the revision process may

have worked in the past, where all communications could be categorized as general-

purpose traffic, institutions now need more dynamic, agile, flexible, and intelligent

approaches that can cope with the growing number of complex specialized workflows

and activities that take place in a network.

This dissertation describes systems and tools that address the challenges de-

scribed above: First, it introduces a human-readable and technically precise language

that addresses the lack of a precise way to document, translate and verify how high-

level policies are mapped into their corresponding low-level implementations. Second,

it describes an alternative way to process packets in order to enforce network security

policies regardless of file misconfigurations or policy violations happening at end sys-

tems. Lastly, the dissertation proposes an approach towards network security policy

enforcement based on the notion of on-demand security exceptions. The exception

system allows individual, fine-grained, trusted research flows to temporarily bypass

the set of baseline security policies enforced for general-purpose (untrusted) traf-

fic. The results from the experiments show that with a prototype exception system,

complex research workflows are able to gain significant performance improvements

(more than an order of magnitude) when compared to the regular scrutiny applied
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to general-purpose traffic in the network.

1.1 Examples and Purpose of Network Policies

Network policies are sets of rules that determine how traffic and communications are

treated while they traverse any part of a network. Policies are expressed in a variety

of ways that range from high-level human-readable statements–comprehensible by

network users and network administrators–to low-level commands and configurations–

understandable and executed by network devices and end-systems that offer services

to network users. Policies have a profound impact in the interactions that take place

within a network because they arbitrate aspects such as network resources that may be

involved (e.g. web servers, databases, file systems) in a particular type of connection

(e.g. incoming, outgoing); when, how often and for how long communications are

allowed to happen (e.g. 30 minutes during business hours a maximum of 3 times

per week); which sets of users may be part of the communication (e.g. graduate

students of the biology department); who can initiate the communication (e.g. only

traffic originating from within the campus network); or what processing/conversion

should be applied to the communication (e.g. encrypted communication using secure

protocols).

Enforcing policy decisions in the network requires network-level mechanisms

that actually implement and carry-out the network policies. Although PWCs define

network policies using (high-level) non-technical statements, organizations (through

their IT staff) rely on enforcement mechanisms that are commonly deployed as part

of the network infrastructure (i.e. they are low-level). After all, communications

ultimately boil down to network packets and, in the majority of cases, the infor-

mation contained inside the packets suffices to apply policy. Since packets traverse

switches and routers, network operators have historically used the mechanisms em-

bedded in these network devices to enforce policy. Furthermore, network vendors
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have also developed dedicated network appliances that are optimized to enforce poli-

cies that require more complex functionality than the lightweight packet inspection

switches and routers do. The network appliances, also called middleboxes [1], rig-

orously scrutinize network traffic flows and apply actions like blocking or allowing

traffic, rate-limiting network connections that consume disproportionate amount of

bandwidth, or logging suspicious activity, ensuring that all analyzed traffic is policy

compliant.

Over the years, low-level enforcement mechanisms that are based on switches,

routers and specialized hardware have helped institutions deploy a wide range of

network policies. In the following, we list example network policies that use low-level

mechanisms to ensure policy compliance and are typically found in university campus

networks.

• All traffic coming into the campus must go through an Intrusion Detection Sys-

tem (IDS). IDSs are network appliances that inspect network traffic and gener-

ate warnings/alerts if suspicious or anomalous activity is detected. An IDS that

inspects all incoming traffic reduces the chances of compromising local network

assets from outside (untrusted) sources. In case of detection, an IDS helps net-

work administrators isolate compromised equipment in a timely manner and

apply appropriate controls to prevent similar events from occurring again.

• Web traffic should only reach registered primary (centrally-managed) and sec-

ondary (managed by units) web servers [2]. Web services are one of the principal

avenues for cyberattacks from external sources because they are “open-doors”

into the local network from the Internet. Network operators should implement

access control policies that prevent web traffic to reach unregistered servers

because oftentimes these servers are not properly maintained (e.g. running

insecure services, or lacking the latest security updates) and increase the the
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chances of security exploits in the network.

• In order for a vendor to gain access to a server from off campus, they must

be assigned a Virtual Private Network (VPN) account, and use the university’s

VPN service [3]. At times, university’s IT department cannot fully manage

specialized equipment in the network. For example, in High-Performance Com-

puting (HPC) environments, vendors might offer remote administration and

management services of the high-speed, low-latency, and complex Infiniband

network [4] due to a lack of trained staff in the university. VPNs establish

secure (and private) channels that protect university information traversing

shared/public networks (like the Internet) to reach authorized third-parties.

• Printing jobs in the computer science department may only be submitted by

members (faculty, staff, students) of the department. Network operators need

to limit access to network printers in order to preserve the estimated lifetime

of printers and the goods needed for the equipment to work properly (e.g.

cartridges, paper, memory, etc).

• Payroll systems should only be accessed by members of the human resources

department and designated payroll officials from units across campus. Payroll

systems contain sensitive information about employees like IDs, phone numbers,

addresses, or financial information (e.g. salaries, account numbers). Ensuring

that access to such information is only granted to an authorized group of indi-

viduals is vital to prevent harmful events such as identity theft and fraud.

• Traffic containing medical records traversing the campus must be encrypted.

Some network policies derive from rules found in federal regulations (HIPAA2 in

this case) that must be fully abided by in order to avoid penalties and sanctions.

2Health Insurance Portability and Accountability Act
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• No individual service or system running on the wired/wireless network should

send or receive more than 10 GB of data per day [5]. Network utilization

policies ensure that network infrastructure resources (e.g. links, servers, etc)

are fairly used among network users. Limiting the amount of traffic a user

may send/receive per day prevents network systems from being overloaded and

the services offered (e.g. web, mail, or file sharing applications) from being

disrupted.

1.2 How Network Policy Implementation is Done Today

In the same way that defining and revising network policies in an organization are

important practices to ensure that only legitimate operations occur in the network,

so are the mechanisms used to implement the policies.

When it comes to network security, one of the first objectives an organization

defines when setting up a network is to protect its local users and network assets (e.g.

services, databases, source code repositories, etc) from external malicious actors. Net-

work vendors have developed varying tiers (in terms of cost, features, performance) of

network firewalls that serve as the first line of defense against network attacks coming

from the Internet. Firewalls are strategically placed at the edge of the network with

the goal that outgoing (trusted) traffic is protected and all incoming (untrusted) traf-

fic is inspected. Firewalls make decisions on whether to allow or drop packets based

on a set of security rules that minimize the risk of cyberattacks from external sources.

Unfortunately, just guarding the borders of the network from external malicious ac-

tors is not enough to protect a network today. With the massive adoption of personal

(network-capable) devices, the chances for an entity within the organization to cause

a security violation drastically increase. For example, a personal laptop that has been

compromised before joining the enterprise network (e.g. by unknowingly download-

ing malicious software) may trigger unnoticeable attacks on local systems once it has
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been assigned a private campus IP address (e.g. via WiFi). In this case, the laptop

completely invalidates the protection offered by border firewalls. Deploying multiple

firewalls at various network locations could certainly decrease the chances of internal

attacks from succeeding. However, the approach is overly expensive, inefficient, and

non-scalable in the long term.

To complement the network edge protection offered by firewalls, network oper-

ators started to leverage built-in features and protocols found on traditional network

equipment as cheaper alternative approaches to enforce policies within the internal

network. One prominent example is the modified use of Virtual Local Area Net-

works (VLANs). VLANs were originally designed to group hosts in a network regard-

less of their physical location. Today, VLANs enforce security and privacy policies

(e.g. separating traffic between groups of users like professors and students), pro-

vide simplified access control between regions of a network (e.g. aggregating groups

of addresses into a unique VLAN number for a more concise notation), and enable

decentralized network management (e.g. delegating management of a VLAN to each

department’s IT staff) [6]. Despite being widely deployed in campus networks as

enforcement mechanisms, VLANs impose limitations in policy enforcement because

they were not designed with network security in mind. For example, the number of

possible VLANs one can configure per switch is limited (1-4096); potentially running

into scalability issues for organizations with large number of groups of users. More-

over, VLANs do not need to have the same meaning across multiple switches, e.g.,

VLAN 10 in one department may refer to student traffic while in another depart-

ment that same VLAN number may be associated with faculty traffic—the lack of a

unified source of truth with campus-wide information complicates policy enforcement

based on VLANs. As a result, most campuses have defined cross-campus standards

for VLAN numbers to ensure VLAN numbers have the same meaning and use every-

where on campus. Lastly, the VLAN information included in network packets can
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only be used as a lightweight form of identification (like IP or MAC addresses) but

do not provide any form of authentication that can prevent spoofing practices.

Firewalls and VLANs examine packet headers to enforce policy. However, as

noted above, additional mechanisms are needed to implement policies at the user

level. Even though IP and MAC addresses sufficed to identify a network user in the

past, today’s networks are far more complex and use advanced techniques (e.g. virtu-

alization) to share equipment across multiple users and applications. Consequently,

policies must be also applied to whoever is logged into a system and is generating (or

receiving) the network traffic; not to mention the complexity when multiple users are

logged in and performing distinct networking activities simultaneously. As a result,

network devices or appliances often include mechanisms that allow authentication

and facilitate dynamic mapping of users in the network to low-level identifiers like

IP addresses. One such mechanism is the Remote Authentication Dial-In User Ser-

vice (RADIUS) [7]. In RADIUS, the server acts as a central authentication place

for remote connection requests received at other network systems. In a simple de-

ployment, users provide authentication credentials to the network system they want

to access (i.e., the RADIUS client). Then, the RADIUS client hands over the user

credentials to the RADIUS server. The RADIUS server internally searches the policy

that must be enforced on the user (e.g. grant full access, grant limited access, forbid

access) and responds back to the RADIUS client with the information found.

Lastly, network operators and system administrators modify the configuration

files of the services and applications running on network servers as well as end system

utilities provided by the Operating System (OS) in order to implement network poli-

cies for servers. Policies such as disabling unnecessary services from a system hosting

a database server, rejecting incoming requests from connections that use clear text

protocols, or only allowing access to a specialized end system from specific IP address

ranges, are example policies that oftentimes are implemented in configuration files.
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Configuration files are a convenient place to enforce policy because they are modular

(i.e. there is a configuration file per application running on the system), the language

and syntax used to modify values and enable (or disable) features is relatively easy to

understand (typically in the form of key-value pairs), and configuration files almost

never have to be written from scratch, instead, applications oftentimes come with

pre-populated (and well-documented) “sane” defaults that suffice to bring a service

up in the network and allow for easy modification.

1.3 Problems With Network Policies

Having described the need for network policies and given examples of policies used in

campus networks, we also need to mention some of the challenges of realizing policy

in today’s networks.

Lack of precise policy definitions and documentation: The first step in the

process of realizing network policies is to define them. Defining policies often

involves time-consuming and recurring (yet necessary) meetings and discussions

where PWCs of organizations revise objectives and procedures in order to estab-

lish what constitutes an acceptable use of the network by network users. Ideally,

the outcome of these discussions should result in a set of policy documents writ-

ten at three levels of abstraction. Namely, (1) at a high-level informing users

about how they should use the network infrastructure and services, (2) at a

middle-level human-readable yet technically-precise manner that tells IT per-

sonnel what the policy means in terms of network configuration (e.g. network

ranges, groups of systems, network traffic), and (3) at a low-level that can

be used by policy enforcement mechanisms that ultimately will implement the

policy.

Today, policy definitions exist at the higher level. Looking at several univer-
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sities’ network policies online [8, 9, 10, 11, 12], one can find statements and

documents indicating the permissible, mandatory, and prohibited actions that

users may and may not do if they use the campus network infrastructure. From

a technical point of view, high-level policies are vague and imprecise due to their

target audience (users, board members, regulatory agencies) and hide details

about the underlying equipment implementing the policies (i.e., the low-level

statements).

Unlike high-level policies, middle-level statements that should be targeted at IT

staff are non-existent or scarce at best. Even worse, instead of carefully deriving

the middle-level information from the high-level policies, network operators are

on their own (using their own intuition) when it comes to deciding how to map

vague high-level statements onto the network. The problem with this approach

is that the lack of technicality in high-level statements constrains the implemen-

tation of the policy to the interpretation and expertise of the network/server

administrator—policies become hard to accurately translate, deploy/implement

and verify. Even a perfect configuration where multiple policies are manually

added and sanity checked, the distributed nature of some policy enforcement

mechanisms (e.g. recall VLANs above) and the technical details found while

configuring network devices complicate tasks associated with network policy

maintenance. Mapping high-level statements straight into low-level configura-

tions hinders the possibility to verify and ensure that a policy is active over a

period of time. Moreover, because of the dynamic nature of campus networks,

nothing prevents other members of the IT staff to issue new configurations to

support an emerging service while unknowingly violating/overriding a policy

that was already in place.

Dangerous impact of server configuration in policy enforcement: Various

high-level statements found in university network policy documents (like AUPs)
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are expressed in terms of the services campus infrastructures offer and the

systems that host those services (e.g. web, mail, file, or video-conferencing

servers). For the most part, hardware and software powering services is highly

configurable, flexible, and capable of enforcing various types of policies via

simple modifications to configuration files. Albeit possible, there are adversities

of using server configuration as the only mechanism to implement policy. Policy

enforcement requires careful box-by-box configuration that does not scale well

(e.g. manual intervention for hundreds or thousands of systems in a campus

network), is error-prone (e.g. potential for typos in configuration files), and

conflates device/service configuration with policy enforcement. For example,

system administrators conflate functionality and policy enforcement when the

network policy requires a web server to be contacted over secure a connection

(e.g. via HTTPS and not HTTP), when administrators set up a blacklist to

certain nodes to forbid access from specific outside entities (e.g. pairing Secure

Shell (SSH) with fail2ban [13]), or when administrators limit access of a system

to a predefined set of networks, IP ranges, network users, or hosts in the local

network. In all three cases, the policy is implemented as part of configuration

files overlooking the fact that network equipment (i.e. routers/switches) could

enforce the desired behavior. In addition, it is challenging to enforce policy at

end systems because users, that now have the ability to join internal networks

with their personal equipment, might be system administrators themselves.

While a group of conscious users might responsibly follow security guidelines

published by the organization, the chances are high that most users oftentimes

end up relying on “sane” defaults that come with the applications they use.

Although default configuration files allow for fast deployments (i.e. services

working out-of-the-box), the default functionality found on the files depend on

decisions made, and best practices defined, by the developers of the software as
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opposed to organization AUPs.

The need for on-demand policy exceptions when the enforcement mecha-

nism negatively impacts legitimate workflows: Network policies are typ-

ically written and defined around the notion of general guidelines governing

all network traffic. However, in highly dynamic environments like campus net-

works, one-size-fits-all policies are restrictive and impose limitations to some

specialized workflows that actually align with the organization’s goals and ob-

jectives. In order to circumvent these limitations, a limited number of organiza-

tions have established a procedure to add exceptions to general-purpose policies.

Unfortunately, a network user in need of an exception has to perform a series of

time-consuming human-dependent steps such as filling out long forms justify-

ing the exception request, collecting signatures from high-ranked employees (e.g.

Chief Information Officer (CIO), Chief Technology Officer (CTO)), scheduling

meetings with IT staff and PWCs, mailing hard copies of forms to multiple

offices, to name a few. In addition, the (static) policy exceptions a user can

requested are intended for static workflows that are expected to remain in place

for long periods of times (on the order of months). However, exceptions can

be given a more important role and can be used as a tool to provide context

that could allow user trusted workflows to temporarily bypass the general poli-

cies defined by network providers. Recall the first sample policy we presented in

Section 1.1: “all traffic coming into the campus must go through an IDS”. While

IDSs offer security features to network traffic, their internal packet processing

mechanisms and intensive analysis oftentimes result in adverse effects to com-

mon research-oriented operations. For example, science workflows often require

short-lived, high-throughput transmissions when working with large datasets

(e.g. to share data sets with collaborators at other institutions). Enforcing the

aforementioned security policy via heavy IDS inspection poses a major perfor-
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mance bottleneck to big data transfers and ignores the fact that network users

can share characteristics of the network traffic they will send before the transfer

starts.

With information about the transfers, individual workflows could be verified

and marked as trusted. After trust establishment, a valid exception for a data

transfer workflow would be to only allow the specific data transfer to bypass

the deep scrutiny of the IDS while the remaining general-purpose traffic would

still be subject to the general inspection policy, even if it comes from the same

end-host.

1.4 Dissertation Contributions

Part of the complexity involved in defining technically precise policies, conflating

server configuration and policy enforcement, and allowing trusted exceptions, lies in

the distributed nature of network equipment used to perform these tasks. It is hard

to describe and specify global network-wide policies when the entities and protocols

used to enforce them behave in distributed and independent ways. Even in reduced

environments (e.g. per-department policies), unawareness of the regulations that are

enforced elsewhere in the network could lead to unexpected violations to security

policies or undesired network performance for regular operations.

As noted above, the problems operators face with respect to network secu-

rity policies are: (1) Policy Writing Committees write network policy documents

using vague, non-technical, imprecise statements that are challenging to implement

in the network; (2) network operators configure network devices to implement poli-

cies largely relying on personal interpretation of the policy documents and personal

expertise and skill set; (3) policies that are targeted at servers are not enforced in the

network but usually implemented in configuration files of the server, thereby conflat-

ing policy enforcement with service functionality; and (4) traditional one-size-fits-all
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policies introduce performance and behavior issues to certain flows that do not need

enforcement.

In this dissertation, we will address these problems and provide the following

contributions.

Human-readable translatable policy language: We introduce a human-

readable yet technically precise policy definition language (called PoLanCO)

for network operators to write network security policies and request exceptions

based on information and details of the network gathered from multiple sources

and protocols (e.g. types of traffic, static files, RADIUS server authentications,

Simple Network Management Protocol (SNMP) data, OpenFlow). The

network information includes specifics about the equipment that is used, the

built-in functionalities each network device has that can be used to enforce

policies, or the paths available to traverse the network. The proposed language

serves as a middle ground that fills the existing gap when translating vague

and imprecise high-level statements (typically tailored to network users) into

low-level configurations and commands of network equipment (used to enforce

policies). We show that with the human-readable language it is possible to

describe and document a set of policies describing the permitted, prohibited

and mandated behaviors users must abide by in several environments of a

campus network. Particularly, we show examples of how policy excerpts

publicly found on a large number of university websites can be written as

simplified human-readable statements using PoLanCO. Moreover, we also show

that operators may use PoLanCO to write policy statements that are not

found in AUPs that enforce policies regarding the interactions of components

within specific environments (e.g. printers in a department, the edge of the

network, emerging HPC systems, etc.).
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Separation of policy enforcement and server configuration: We propose a

network policy enforcement layer called Network Security Caps that leverages

OpenFlow packet processing to separate the enforcement of policies from

network server configurations. Unlike related work in the field, the approach

does not require a clean-slate network, ad-hoc modification of middleboxes to

enforce policy, or expensive network appliances to be deployed – significantly

reducing the Capital Expenditures (CapEx)/Operational Expenditures (OpEx)

when compared to a full overhaul of the network infrastructure. Moreover,

the enforcement layer can be extended to add customized services that require

decision making on a per-flow basis and are not necessarily tailored towards

only security. We reduce the potential danger to cause a security policy

violation by implementing policies not only at the end-system level but also

in the network equipment in charge of forwarding traffic. With this approach,

we do not abolish policy enforcement at end-systems, but rather ensure that

there are multiple layers of security controls placed throughout the network

system to minimize exploits. Under Network Security Caps , if a server is

misconfigured, the network will still ensure that actual policy is enforced to

the traffic sent to/from the vulnerable server.

Short-term on-demand security exceptions: We present a new approach to-

wards network security based on the notion of short-term on-demand security

exceptions. We developed an exception system where network providers and

network users can establish trust relationships in order to temporarily deploy

fine-grained policy exceptions that can be associated with individual workflows.

The exception system prototype requires users (or their applications) to authen-

ticate using university credentials and provide information about the character-

istics of their flows (e.g. target destinations, types of traffic, project numbers,

department affiliation). The flow information provides context to the decision
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making process of our automated system in order to deploy (or reject) an excep-

tion. Researchers are able to achieve performance improvements of more than

an order of magnitude for some of their research flows while letting general-

purpose traffic be regulated by traditional network appliances used to enforce

baseline security policies on the regular campus network.

Although the work in this dissertation applies to any type of Autonomous

System (AS), the focus of this work is on campus networks. We developed the

systems presented in this dissertation under the assumption that a campus network

is centrally controlled and managed by an IT group. With current advancements on

intent-based systems, campus networks have started to move to solutions that use

a centralized controller allowing us to apply (distributed) policy from a central IT

system.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows:

• Chapter 2 presents background and existing work related to the applications,

technologies and systems presented in this dissertation,

• Chapter 3 proposes a network policy language that is human-readable yet tech-

nically precise that translates network policies into low-level configurations,

• Chapter 4 describes the Network Security Caps enforcement layer that protects

end systems by enforcing policy in spite of misconfigurations,

• Chapter 5 describes our approach towards network security that uses trust

relationships to promote exceptions as first-class entities for policy enforcement,

• Lastly, Chapter 6 discusses future directions, further research opportunities,

and a summary of the work presented in this dissertation.
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Chapter 2. Background and Related Work

In this chapter, we describe the state-of-the-art of services and approaches that re-

late to the design, concepts, applications, and prototypes described in the subsequent

chapters of the thesis. First, we give an overview on how the traditional mechanisms

used to enforce security in computer networks. Then, we describe the challenges that

network operators face when trying to enforce security policies in networks. Next, we

review historical efforts that address those challenges that lead to the emergence of

the Software-Defined Networking architecture. Lastly, we summarize existing appli-

cations, frameworks and efforts addressing (part) of the problems we introduced in

Chapter 1. Specifically, we refer to approaches used to secure networks in Software-

Defined Networking (SDN) settings, and we report on network programming lan-

guages built for SDN that are intended for network operators to develop programs

– as opposed to Command-Line Interface (CLI) – that map high-level policies to

low-level configurations for policy enforcement.

2.1 Traditional Network Security

Networks consist of a set of distributed switches and routers where packets are for-

warded on a hop-by-hop basis. Network devices make independent forwarding deci-

sions based on network information gathered via several distributed protocols such

as the Link-Layer Discovery Protocol (LLDP) [14] that advertises device identity

and capabilities to adjacent peers, the Spanning-Tree Protocol (STP) [15] that helps

preventing packets from looping in a single domain, the Routing Information Proto-

col (RIP) [16] that exchanges routing tables between neighbors, the Open Shortest

Path First (OSPF) [17] and Intermediate System to Intermediate System (IS-IS)

protocols that share the state of router interfaces to other routers, or the Border
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Gateway Protocol (BGP) [18] that exchanges paths and reachability among edge

routers of ASs.

Historically, network operators have manually configured networks by logging

into each node and issuing vendor-specific CLI utilities to configure the nodes in hopes

of a implementing a consistent policy across the network. More recently, because the

number of services, systems and devices in a network have increased exponentially

over the last decade, there has been a push from network vendors to offer centralized

controllers that network administrators can use to configure the network in a single

place. Examples of these controllers include SDN controllers (see Section 2.3.1),

Intent-based network controllers (e.g. Cisco Digital Network Architecture [19]), or

Wireless Local Area Network (LAN) Controllers (e.g. Aruba Controllers [20] ).

Albeit these centralized solutions provide network configuration consistency,

they do not solve the problems we highlighted in Chapter 1 and the demands to

protect the infrastructure from increasingly complex network attacks, provide optimal

performance for bandwidth/latency sensitive applications, and make efficient use of

the network resources. Moreover, the lightweight control and management features

embedded in general-purpose network equipment cannot efficiently enforce policies

that require heavy processing of network packets. Network vendors started to develop

dedicated intermediary appliances (so called middleboxes) that provide more complex

services and heavy processing than what is commodity routers/switches. Middleboxes

shortly became have become the go-to mechanisms where network operators specify

and enforce organizational policies based on sets of rules and event descriptions.

Moreover, some of the appliances also contribute to the security of the network.

With the increasing number of Bring Your Own Device (BYOD) systems joining

networks, more avenues for security threats are opened. It is not uncommon to find

these specialized devices at various key locations in the network intercepting traffic,

replicating it for further offline monitoring, or performing any local action based on
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the packet payload contents.

Network security has become a major priority in today’s networks given the

significant effects (including financial losses) a security breach – such as loss of con-

fidential or personal data, unavailability of a service, theft of intellectual property or

harm to network users – may cause to an organization.

In a distributed computer system such as a network, security involves the

protection of the resources that make up the infrastructure including the transmis-

sion medium (e.g. channels and connectors); network equipment like access points,

switches, or routers; end-systems such as servers, mobile devices, IP telephones, desk-

tops, Internet of Things (IoT) devices, etc. as well as the files and information stored

in them. Over the years, security experts from both industry and academia have

developed multiple security enforcement technologies and defense mechanisms in the

form of network appliances and dedicated systems to ensure that network infrastruc-

ture elements are secured from various attacks. Below, we describe some of the most

common security approaches found in traditional networks (also referred to as legacy

networks).

2.1.1 Firewalls

Firewalls are arguably the most well-established technology for protecting networks

from unauthorized access. They are typically the first line of defense to the outside

world (i.e. the Internet) inspecting all incoming and outgoing traffic to and from

the local private network (Fig. 2.1). The are several implementations of firewalls in

the market ranging from in both software (e.g. iptables [21], pfSense [22], PF [23],

Windows Firewall [24]) and hardware (e.g. Palo Alto [25], Dell SonicWALL [26],

Fortinet FortiGate [27]). Firewall solutions filter traffic and label it as legitimate or

malicious based on information found in network packets and a set of (prioritized)

rules that represent the policy of an organization. Firewall policies are typically
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consolidated in two forms:

Firewall
Desktop

Server

Internet

Figure 2.1: Firewall as a perimeter defense of a network

• Deny-everything-not-specifically-allowed : Also known as whitelisting. Under

this setup all traffic is denied by default with the exception of a few allowable

connections. This model is highly conservative, severely limiting access to the

internal network from the outside.

• Allow-everything-not-specifically-denied : Also known as blacklisting. A more

permissive model that flags bad actors, placing them on a “forbidden” list and

letting all other communications go through.

In addition to the allow/deny policies, current firewall solutions also include

other services such as alert generation, system logging, network address translation,

connection tracking, and proxy functionality. Although firewalls are normally associ-

ated with perimeter defense, they can also be found at other locations in the internal

network. For example, in front of dedicated public servers, data centers, or even

running on critical end systems given that almost every OS provides an easy-to-use

firewall utility.
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2.1.2 Intrusion Detection and Prevention Systems

Intrusion Detection and Prevention Systems (IDPS) are software or hardware sys-

tems that monitor the events occurring in a computer system or network. IDPSs

analyze packet captures and events to identify signs of security problems [28] such as

suspicious activities (e.g. using BRO [29]) or by matching network packets against

well-known patterns and signatures (e.g. using SNORT [30] or Suricata [31]).

IDPSs can be described in terms of three main components:

• Information Sources: The information used to determine whether an intrusion

took place or not. For example, data collected while monitoring the network,

individual hosts, or application processes.

• Analysis: IDPSs dissect and organize the events obtained from the information

sources and determine when a particular sequence of events relate to ongoing

intrusions or compromises that already happened.

• Response: The actions that should be executed whenever an intrusion is de-

tected. The set of actions include passive measures such as logging, reporting

the incident to the network operator for further action, or some active opera-

tions such as dropping a connection, or redirecting it to a honeypot.

While IDPSs were historically present in the systems they protected (called

Host-based Intrusion Detection Systems), network operators can achieve a significant

cost reduction by deploying these types of enforcement mechanisms as standalone

devices that can monitor targeted portions of the network (Network-based Intrusion

Detection Systems). Today, most of IDPSs are network-based that perform local

analysis of the traffic and report detected anomalies to a central management console.

IDPSs can be deployed at various locations (Fig. 2.2). For example, an IDPS

can be passively attached to a switch port that mirrors traffic coming from other
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interfaces for offline monitoring, actively deployed on the network path such that

packets are analyzed before they reach their destination, or activated on critical

systems that require enhanced security and are critical to the business operations

(e.g. web site, file server, mail server, etc.).

External 
Firewall

Private Network

Internal Server

Desktop

Internet

Internal
Firewall

  DMZ

Web
Server

File
Server

Host IDS

Passive IDS

Host IDS

Active
IPS

Figure 2.2: Deployment of IDSs and IPSs

2.1.3 Virtual Private Networks

A Virtual Private Network provides a mechanism to protect data that is being trans-

mitted over the Internet (insecure) to a private network (assumed to be secure).

VPNs allow users to remotely (e.g. from home, say during a trip) access systems

and resources that are not accessible from the Internet because the campus firewall

(Section 2.1.1) normally blocks access to those resources from external locations.

In order to access resources via VPN, network users must install an authorized

client on their local machine to authenticate to a Remote Access Server (RAS) that

is normally located at the edge of the campus network. The RAS contacts a directory

service like a RADIUS or Lightweight Directory Access Protocol (LDAP) server to

verify that the user is allowed to use the VPN service. The RAS then creates an

24



www.manaraa.com

encrypted tunnel over the Internet connecting the user to the campus edge so that

the user’s computer appears to be part of the campus network.

Once a network user is authenticated, every individual packet the user sends is

encapsulated in a new packet with new header information. The new packet provides

routing information so it can traverse the public network before reaching the tunnel

endpoint. Upon tunnel endpoint arrival, the packet is unwrapped and traverses the

internal network until it reaches the desired resource. Tunnels are established using

technologies such as the IP Security (IPSec) [32] protocol, the Point-to-Point Tunnel-

ing Protocol (PPTP) [33], the Layer 2 Tunneling Protocol (L2TP) [34] or the Secure

Sockets Layer (SSL)/Transport Layer Security (TLS) protocol.

Campus
Supercomputer

Server

Internet
(Insecure)

Auth Server

Remote User
Running VPN Client

Figure 2.3: Using a VPN to access campus resources

2.1.4 Honeypots

A honeypot is a collection of servers or systems that is typically separated from the

production network and whose purpose is to lure attackers into interacting with them

(i.e. act as traps or baiting systems). The goal of a honeypot is to gather, log, and

analyze the operations and tasks executed by an attacker in order to learn her modus

operandi and how to best protect the actual production resources from potential

vulnerabilities.
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Figure 2.4: Multiple locations to deploy a honeypot

Honeypots do not enforce network security policies per se. However, they are

a frequently used security analysis tool that help network security policy writers with

the definition of newer controls for emerging attack trends. Since the Domain-Specific

Language we propose in Chapter 3 allows network operators to write statements that

send traffic to honeypots, we describe below the locations in the campus network

where honeypots are found.

Honeypots [35] can deployed at possibly strategic places throughout the cam-

pus network (Fig. 2.4). A honeypot deployed at the edge, outside the campus external

firewall, can attract a great number of external attackers since no pre-filtering is done.

However, honeypots at the edge do not monitor attacks coming from the inside of the

network. Another place where honeypots can be deployed is alongside Internet-facing

servers (e.g. web server, or file server) that are typically located in a Demilitarized

Zone (DMZ)—A “service” network located between the campus private network (se-

cure) and the Internet (insecure) where servers are carefully tuned and locked down

to receive access from the general public. Because of their exposure, a honeypot at
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this location could help network operators learn from potential insider and external

actors trying to access public facing servers. However, because DMZs typically sit

between two firewalls (i.e. an external firewall and an internal firewall), they only

receive traffic that either firewall let through and therefore do not see all possible ma-

licious connections. Lastly, honeypots can also be deployed inside the private network

to log and analyze behaviors and insider attacks. The major difficulty of a honeypot

is its initial setup as it still needs to be a controlled environment that has to resemble

a real network yet should not be used to attack production systems.

2.2 Limitations of Traditional Networks

In recent years, campus networks, enterprise networks, and data center networks

have grown in size, been used to carry a wide range of traffic, and become increasingly

complex, expensive and hard to manage [36]. Below we outline some of the challenges

network operators face when managing and trying to secure the growing number of

routers and switches that comprise today’s traditional networks:

Extensive Protocol Support: Router/Switch vendors often add support for a

wide range of protocols. While a large feature set may look appealing, it

complicates network management because some protocols can cause conflict

with each other or with features enabled other equipment thereby introducing

unexpected behaviors for network users.

Cross-Vendor Incompatibility: The incompatibility across multi-vendor equip-

ment leads to unusual workarounds to manage and troubleshoot the network.

The use of non-standard proprietary protocols makes it difficult for an opera-

tor to understand unexpected traffic behavior (e.g. packets being dropped, low

speeds over data transfers) reported by network users.
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Middlebox Processing: The extra layer of complexity added by middleboxes; al-

beit being pervasive and critical in medium and large networks, from a network

management point of view, they are significantly more expensive than general-

purpose equipment. These devices increase the CapEx/OpEx of organizations,

introduce a new set of vendor-dependent CLI commands and management dash-

boards that oftentimes require extensive training or outsourcing management,

add to existing box-by-box configuration workflow, and, like any proprietary

solution, packet processing is susceptible to bugs and misbehavior because un-

like general-purpose equipment, these middleboxes are typically blackboxes that

only the vendor can fix.

2.3 Software-Defined Networking

The problems outlined above are not new or even recent, dating back to the early-mid

1990s [37]. Since that time, the goal to enable programmable networks that simplify

network management and lower the barrier to deploy, new, more efficient, more se-

cure, services in the network has been an active research area. Caesar et al. proposed

a logically centralized Routing Control Platform (RCP) [38] that separated the IP

forwarding plane from the process of route selection and BGP route advertisement for

every router within an AS. Their work showed that RCP could emulate a full-mesh

Internal Border Gateway Protocol (IBGP) configuration while substantially reducing

the overhead on the routers. Greenberg et al. proposed 4D [39], a clean slate architec-

ture that generalized concepts introduced in RCP to achieve network-level objectives

(like efficient BGP route advertisement) instead of individual router configurations.

4D had four components, namely: (1) a Decision plane in charge of making all deci-

sions driving the network control based on a realtime view of the network topology;

(2) a Dissemination plane that provided a communication channel to install packet-

processing rules (derived from decisions made) into the network switches/routers; (3)
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a Discovery plane responsible of collecting topology and traffic information in the net-

work from neighbors and physical components; and (4) the Data plane whose main

function is to process individual packets based on state pushed by the decision plane.

While 4D was designed as a clean slate environment, the work of Casado et al. with

the Ethane [40] architecture demonstrated a concrete deployment of programmable

network infrastructure on Stanford’s University campus network. The deployment

proved that previous efforts to separate the decision making process from packet

forwarding would indeed not only simplify network management, but cause a re-

duction of expenses due to the use of commodity hardware. Moreover, Ethane had

the potential to develop innovative workflows in the network based on fine-grained

policies, enable network virtualization, and serve as the basis to raise abstractions

of network concepts/elements that could yield the development of network program-

ming languages. SDN could be considered one of the most effective demonstrations

towards enabling programmability in traditional IP networks [37], particularly with

examples of publicly successful deployments like Google’s data center network [41],

the Global Environment for Network Innovations (GENI) [42] a federated virtual

testbed for research experiments, AT&T’s take on how to integrate SDN with tradi-

tional technologies to enable an SDN Internet Service Provider (ISP) backbone [43],

or Facebook’s SDN solution to efficiently deliver content to its users [44].

In addition, higher-level abstractions for networks such as network program-

ming languages (Section 2.4), network operating systems, security applications, new

paradigms like Network Function Virtualization (NFV) and cloud computing show

the rapid evolution of SDN over the last decade. Both industry and academia have

been involved in a myriad of projects tackling on-going deployment and research prob-

lems under this architecture (e.g. self-driving networks [45, 46], Internet eXchange

Points [47, 48], security attack mitigation [49, 50], portability of applications [51, 52],

policy and intent mapping [53, 54], etc.). SDN is still an emerging architecture and

29



www.manaraa.com

due to the well-known rigidness of IP (and its narrow waist) and the cost associated

in the replacement of existing infrastructure, SDN has the potential to replace the

distributed architecture on which the Internet was built. Nevertheless, we consider

SDN can coexist with legacy technologies and more importantly, gives the research

community an opportunity to explore alternative approaches towards problems in

legacy networks.

2.3.1 Architecture

SDN separates the control plane from the data plane into a logically centralized entity

(Fig. 2.5). By decoupling the data and control planes, network devices become simple

forwarding elements that carry out the decisions made by the centralized entity (called

the Network Operating System (NOS) or SDN controller).

The NOS uses a well-defined interface called the Southbound Interface to mod-

ify the forwarding state of network devices and determine what actions should be

applied to specific network flows via control messages. Internal modules in the NOS

generate the messages that make network decisions based on information such as net-

work load, status of the network topology, network policies, or requests from network

applications built on top of the NOS.

The ability to develop network applications (shown in the management plane

of Fig. 2.5) is what makes SDN networks programmable. The NOS abstracts the com-

plexities found in the forwarding plane (e.g. diversity of vendors, supported protocols)

and defines Application Programming Interfaces (APIs) (the Northbound Interface)

that network applications can use to provide specialized services (e.g. traffic engineer-

ing, Quality-of-Service (QoS), security, and routing) similar to the features offered by

traditional routers.

In SDN, every plane has its own specific functions, can evolve independently,

and communicates with other layers via APIs that are described below. This separa-
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Figure 2.5: SDN architecture

tion of concerns has fostered network innovation from both academia and industry.

Some vendors have developed highly-capable SDN-compliant forwarding equipment,

several open source communities promote and develop NOSs projects, and a variety

of research projects constantly tackle complex problems that were hard to address

under traditional networking (e.g. network orchestration, global policy management,

holistic network troubleshooting). The systems we describe throughout this disser-

tation are mainly network applications in the management plane of the SDN archi-

tecture. Our prototypes used the Aruba VAN [55] as control plane and hardware

OpenFlow-enabled switches deployed at various locations of the campus network of

the University of Kentucky as the data plane of our SDN network.

2.3.2 SDN Northbound and Southbound APIs

Application Programming Interfaces (APIs) are the means that allow a layer in SDN

to exchange information with, and access features provided by, another layer. While

specific implementations of SDN might have several APIs within an individual layer

(e.g. built-in modules or internal processes communicating with each other), there are
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two major APIs in the overall SDN architecture, namely, the Southbound Interface

and the Northbound Interface.

Southbound Interface: The Southbound Interface is used for communication be-

tween the controller and the forwarding devices. In OpenFlow, the NOS acts

as a server whereas the switches behave as clients. Note that this role is only

relevant for the establishment of the communication channel (i.e. the three-way

handshake). In reality, OpenFlow messages can be sent in either direction in

an asynchronous fashion as long as the control channel is active. Some example

control messages include OpenFlow version negotiation (bidirectional), request

for packet counters (controller-initiated), or network event reporting (switch-

initiated). Over the years, several NOSs have added support for both newer

and legacy protocols in addition to OpenFlow. For example, OVSDB [56] can

be used to configure virtual Open vSwitch (OVS) nodes, NETCONF [57] and

SNMP [58] enable compatibility with non-OpenFlow devices, and OpFlex [59]

provides policy control for Cisco-only deployments. In this thesis, we focus our

implementations around the OpenFlow protocol. Specifically, we use the NOS

to modify the Flow Table(s) of OpenFlow-capable devices and determine how

traffic flows are processed based on the contents of the packet headers (e.g.

source IP, destination IP, incoming port, protocol). Section 2.3.3 discusses in

more detail the ways of processing network packets using OpenFlow. We leave

implementations of SDN using legacy devices as future work (although some of

our initial efforts are included in [60]).

Northbound Interface: Unlike the Southbound Interface, the Northbound Inter-

face does not have well-defined protocols binding the NOS with network ap-

plications. Instead, the Northbound Interface uses technologies from the soft-

ware world such as REST APIs [61], gRPC [62] or Software Development Kits
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(SDKs)1 to allow network applications consume information and features offered

by the NOS. While there have been some efforts to standardize the Northbound

Interface [63], currently, NOS developers define the technology, API calls, and

data models that management applications must use to fetch/push network

information data. As a result, vendor lock-in scenarios at the control plane

are not uncommon when developing network applications. We addressed this

problem in [52] by adding a lightweight translation layer on top of the con-

trol plane. The translation layer (described also in Section 3.4.3) serves as a

unified Northbound Interface for all the systems we describe in Chapter 3 and

Chapter 5.

2.3.3 SDN Packet Processing: Reactive vs Proactive

In an OpenFlow-enabled SDN network traffic is processed primarily based on two

components (1) the information present in the header of each packet and (2) the set

of active flow table entries (also called OpenFlow rules) in a switch at the moment of

packet arrival.

When a packet arrives at a switch, the switch’s processing pipeline determines

the modifications and actions that must be applied to a packet. In the initial experi-

mental versions and version 1.0 of the OpenFlow protocol, the pipeline was composed

by one individual flow table (the minimum number of tables for a switch to be Open-

Flow compliant). Newer versions of the protocol (optionally) allow for more complex

processing letting the packet be modified multiple times throughout the processing

of linked flow tables.

Packets are matched against existing OpenFlow rules in the current processing

table. Should a match occur, the actions found in the matching rule are executed.

The actions may explicitly direct the packet to another table for further processing,

1A collection of libraries used for developing applications for a specific device or operating system.

33



www.manaraa.com

Table 2.1: An example flow table with four OpenFlow rules

Match Priority Counters Actions Timeouts Cookie

protocol=tcp,
tcp dst=80,
ip dst=3.4.5.6

100 10 pkts set ip src=10.0.0.1,
set ip dst=10.8.8.2,
output=port 2

idle=120 secs 0xab

protocol=udp,
udp src=53

50 400 pkts controller 0 0xae

ethertype=arp 1 10 pkts go to table 200 0 0xff

* 0 3000 pkts drop 0 0xff

modify some of the packet headers before exiting the pipeline, send the packet out

of a particular port, or simply drop the packet. The OpenFlow specification [64],

provides in great detail the list of (mandatory and optional) actions and instructions

that can be applied to packets.

A flow table consists of multiple prioritized rules. The structure of each rule

is shown in Table 2.1. The match specifies the field values a packet header must

have for the rule to be activated (e.g. the third rule matches Address Resolution

Protocol (ARP) traffic The priority establishes the order in which rules are evaluated

in the table (higher priority rules are evaluated first). The rule counters contain

statistical information about the number of packets (and bytes) that have matched

the rule. The rule actions determine the operations or pipeline processing applied to

a matching packet. Possible actions include (but are not limited to) rewriting packet

header fields in the (rule 1), sending traffic to the controller (rule 2), forwarding

packet to another table in the pipeline (rule 3), or simply dropping a packet (rule 4).

Each rule has two timeouts that define the lifetime of a rule. A hard timeout specifies

a fixed lifetime for the rule. An idle timeout determines for how long a rule may last

without a packet match. For example, in Table 2.1 rule 1 expires after two minutes

with no matching packets and the rest of the rules do not expire unless explicitly

instructed by the controller. Lastly, each rule has a cookie set by the controller when

the rule was installed. The (internal modules of) NOSs use cookies to simplify rule

management. For example, in Table 2.1 the cookie value 0xff could be associated
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to default rules pushed by the controller upon switch connection whereas any rule

starting with 0xa could represent a rule pushed as a consequence of a Northbound

Interface request.

A rule that has all of its fields wildcarded is called a table-miss rule and

determines the default packet processing for traffic that did not match any other

rules. A table-miss rule is similar to the default route in a routing table in legacy

networks where in the absence of a prefix match, a default route is selected to forward

a packet to. In an SDN network, where SDN controller defines the decision logic of

the network, it is important to determine what and when rules will be installed in the

switch based on the packets that traverse the network. There are two basic default

modes of packet processing, namely, reactive and proactive processing. We describe

both modes below using the examples shown in Fig. 2.6.

Reactive: Under reactive processing (Fig. 2.6a), once a switch (e.g., R1) receives

the first packet of a flow (step 0), the table-miss rule instructs the switch to

send the packet to the controller. Then, at the controller, internal network

applications get access to the contents of the packet and issue control messages

based on the packet information (step 1). In the example shown in Fig. 2.6a,

the network application installs two flow entries at R1 and R2 (step 2) that

ensure subsequent packets of that same flow reach HOST B without contact-

ing the controller again (step 3). The main benefit of the reactive processing

mode is its flexibility to make decisions via internal controller applications for

every unknown packet. For example, the on-demand security exception sys-

tem (Chapter 5) inspects Domain Name System (DNS) responses to deploy

exceptions “on-the-fly” for data transfers to cloud storage providers that adopt

moving target defense practices. However, the major drawback of reactive pro-

cessing is that in the presence of multiple flows the controller can get severely

overloaded. A buggy network application could fail at handling bursts of re-
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quests introducing unexpected behavior to the network users.

Proactive: In proactive processing, in order to prevent NOS overload, the default

table-miss drops all packets unless there is a rule matching the traffic. In

the example shown in Fig. 2.6b when a flow from HOST A is initiated, it

is possible for the packets to get dropped (step 0) because of the table-miss

action. Under proactive processing, network users need to wait until a controller

module (possibly after an external request from a management plane network

application) installs some flow entries at the switches (step 1 and 2). Upon

rule installation, packets may traverse the network and reach their destination.

The proactive processing mode is a conservative approach that is generally

adopted when it is possible to know before-hand the flow characteristics and the

actions that should be applied to the packets of such flow, and when controller

overload is a concern. The systems presented in this dissertation that leverage

a controller NBI assume flows (involving types of traffic, end points) are, for the

most part, known in advance; therefore, proactive is the main mode of packet

processing of the proposed systems. The main drawback of proactive processing

is that on-the-fly dynamic packet processing is not possible because controller

applications never make decisions (i.e., issue control messages) based on packet

contents.

2.3.4 Leveraging SDN to Enhance Network Security

Under the SDN architecture, network application developers (e.g., researchers, ven-

dors, technology companies) leverage the NOS’s global view of the network and event

reaction to develop a variety of network security solutions ranging from use-case-

specific protection applications (e.g. the DNS protector app from HP [65]) to more

complex frameworks that require custom agents running on middleboxes, control
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Figure 2.6: Types of packet processing in SDN-enabled networks

plane Deep Packet Inspection (DPI), or unconventional application coding to provide

security to a network.

In terms of network security policy enforcement, there are systems and frame-

works that leverage OpenFlow to follow the same definition of a policy (a set of rules)

that we used in the systems described in the following chapters.

Ben-Itzhak et al. [66] proposes the EnforSDN architecture based on the ob-

servation that middleboxes (e.g. Firewall, Intrusion Prevention System (IPS), IDS,

etc.) are consist of three logical processing layers: (1) Configuration plane derived

from a high-level policy description, (2) a resolution plane that uses concrete policy

rules derived from the configuration, and (3) the Enforcement plane that corresponds

to the low-level data plane instructions applied to a traffic flow. In EnforSDN , the

resolution and enforcement planes of middleboxes are separated to reduce middlebox
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overload, network load, and latency. Fig. 2.7 shows the architecture and control plane

flow of EnforSDN in a simple network with a firewall and two switches. Policies are

fed into the middlebox as configurations. Then, once the source device initiates a

flow, the first packet is sent to the network appliance for policy resolution, i.e., how

to handle subsequent packets of that flow. Once a middlebox decides how to process

packets in the flow, the decision is informed to the SDN controller (via a custom API)

for enforcement using OpenFlow rules such that further packets of the same flow do

not go through the appliance again. Unlike EnforSDN , our work derives policies from

AUPs that are fed into the working memory of a separate decision system (Business

Rule Management System (BRMS)) that generates the OpenFlow rules that must

be installed in the network. We argue that middlebox modifications is expensive and

infeasible in campus networks. Instead, we leave middlebox enforcement “as is”for

general-purpose traffic and propose an exception system that can deploy middlebox-

free paths on a per-flow basis for trusted users that share information about their

traffic before communications start.
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OpenFlow S1 OpenFlow S2

SDN Controller

EnforSDN 
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EnforSDN 
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Figure 2.7: Architecture and control plane flow in EnforSDN

Bakker et al. [67] propose an OpenFlow-based network-wide virtual firewall

that extends the functionality of traditional (perimeter) firewalls by allowing traffic
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filtering not only at the boundaries but within an OpenFlow-network. Fig. 2.8 shows

an example workflow on how policies are enforced with the network-wide firewall

application.

OpenFlow S2 OpenFlow S3

SDN Controller

File 
or 

REST API Call 

Network-wide Firewall  
Controller App

OpenFlow S1 OpenFlow S4

Campus
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Syntax, No Overlap, etc) 

(1) Rule Installation Request 

Figure 2.8: Network-wide Firewall example deployment and rule installation workflow

Before any policy enforcement takes place, policy domains should be defined.

In the example, there are four policy domains, namely, campus-wide, wireless, Virtual

Machines (VMs), and wired. After switches have been assigned a policy domain, the

network operator may start defining policies using the rule syntax shown below.

Then, the network-wide firewall application checks the rule syntax, the existence of

the policy domain, and the absence of potential policy conflicts with already deployed

rules. After validation, the system schedules the deployment of the policy. Policies

are defined as singleton rules (Access Control List (ACL) rules) that use the following

OpenFlow-like syntax:
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Rule r = {src_ip, dst_ip, protocol, src_port, dst_port,

policy_domain, action, time_start, time_duration}↪→

The policy domain field enforces policies across a group of switches whereas

the time start provide basic policy scheduling functionality. PoLanCO (described in

Chapter 3) does not have scheduling capabilities, however, Drools, the decision system

used to generate rules, does. We leave adding scheduling functionality to PoLanCO

as future work (Chapter 6). On the other hand, not only PoLanCO enforces policies

on a group of switches but also PoLanCO can enforce policies that are expressed

in terms of the varying types of end systems and middleboxes in the network (e.g.,

web servers, laboratory machines, firewalls, IDSs). Lastly, our work allows for the

deployment of on-demand security exceptions as well as more complex policy actions

than the basic filtering (i.e., allow and block) actions supported by the network-wide

firewall application.

In Policy Graph Abstraction (PGA) [53] network operators from various units

in a campus network specify policies simultaneously using network graphs. The input

graphs are consolidated in one unified graph that holds the allowable communications

between systems in the network. Policy graphs may include middlebox processing

requirements as well. middleboxes are modeled using pyretic [68] programs that de-

scribe a middlebox’s behavior. Rezvani et al. [69] extended PGA to let network

operators specify priorities in policy graphs as well as blocking policies since PGA is

mostly a whitelisting model. The added PGA extensions address problems found in

current OpenFlow rule compilers where redundancy anomalies are common thereby

reducing the number of actual rules being pushed to the network switches. We ar-

gue that both systems could be incorporated as part of the rule generation phase in

PoLanCO’s translation pipeline. PGA treats the network as “one big switch” making

40



www.manaraa.com

it challenging to deploy on-demand exceptions that allow specific flows traverse the

network over an alternative (local) path. Although we share PGA’s goal to auto-

mate the way network operators translate high-level policies into low-level network

configuration commands, PGA and our work address the problem from two perspec-

tives. PGA resembles diagrams network operators draw when designing policies, our

work focuses on the definition of human-readable and technically-precise statements

derived from AUPs that use imprecise language.

FlowTags [70] proposes an extension to middleboxes to support tags and a

dedicated API that helps middleboxes interact with the NOS. FlowTags enforces

network-wide policies by controlling the route of a packet in the network using the

Type of Service (ToS)/Differentiated Services Code Point (DSCP) field of the IP

packet header. We argue that modifying middleboxes is challenging because of the

quantity and diversity of middlebox solutions available today. Moreover, reusing the

ToS/DSCP IP packet header field could yield to unexpected behaviors of network

traffic based on existing Differentiated Services (DiffServ) deployments in the network

(e.g. voice, media streaming).

Qazi et al. propose SIMPLE [71], a network security approach the enforces

policies by steering traffic through a desired sequence of middleboxes. Similar to our

approach, SIMPLE assumes there is a network management mechanism that pro-

vides the controller with information about middleboxes (e.g., location, load, and

capabilities). Policies in SIMPLE can only be expressed in terms of middlebox chain-

ing (e.g. HyperText Transfer Protocol (HTTP) traffic must go through a firewall,

then an IDS, and then a web proxy). Unlike the work presented in this dissertation,

SIMPLE does not provide a human-readable policy language and does not allow for

the enforcement of policies in the network that are usually embedded in the con-

figuration files of end systems. Although the exception paths we implemented in

Section 5.4.2 could be replicated in SIMPLE (i.e. specifying a policy that does not
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go through any middlebox), SIMPLE policies are specified by network operators for

long timescales whereas in our exception system we deploy exceptions dynamically

(on-demand) based on established trust relationships between groups of users and

network operators.

OpenSec [72] is an OpenFlow-based framework where network operators can

specify security policies in a human-readable language. Although OpenSec’s language

is more readable than what could normally be written using network programming

languages (Section 2.4), we argue that PoLanCO provides better human-readability

because OpenSec’s language (1) still uses low-level identifiers (e.g., VLAN numbers,

interface numbers, port numbers), (2) does not resemble human-readable sentences

found in AUPs, and (3) only focus on the packet processing done by middleboxes and

does not consider policies that are embedded in configuration files of end systems.

Moreover, OpenSec assumes a topology where middleboxes are removed from the path

between the LAN and the Internet which is not always possible in campus networks.

Similar to FlowTags, OpenSec requires modification of middleboxes, specifically, an

agent that can report the results of the analysis to the NOS. If an agent can be added

to middleboxes, PoLanCO could be easily extended to support the same capabilities

of OpenSec’s language with better human-readability and relaxing the assumption of

middlebox placement.

CloudWatcher [73] is a security monitoring framework for the cloud. Similar to

OpenSec and SIMPLE, the operator describes the security services (i.e., middlebox

functionality) that must be applied to a particular traffic flow specified via an 4-

tuple. CloudWatcher focuses on optimal routes to send traffic to Middleboxes in

a cloud environment with multiple alternative paths. In contrast, in our exception

system (Chapter 5) our goal is to compute paths that actually bypass middleboxes

using the Neo4j graph database.

Shin et al. propose FRESCO [74], an OpenFlow programming framework that
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allows network operators to design, implement, and compose security detection and

mitigation modules using a simplified scripting language for the NOX [75] controller.

Albeit different in syntax, the scripting language could be placed at the same level of

abstraction as the Drools code we described in Section 3.3. We used a mapping func-

tion to translate PoLanCO statements into valid Drools code to generate OpenFlow

rules that enforce policy. We could change the mapping function to generate valid

FRESCO modules. However, policy enforcement in FRESCO requires the analysis

of network traffic at the NOS level; therefore, the NOS could easily be overloaded

and become bottleneck of the network. Instead, PoLanCO follows a proactive packet

processing where policies are enforced at the data plane via OpenFlow rules with

minimal intervention of the NOS.

The systems we describe below address specific network security scenarios that

are complimentary to the work we describe in this dissertation. We reference them

for completeness. Mehdi et al. [76] shows how four traffic anomaly detection algo-

rithms (Threshold Random Walk with Credit Based Rate Limiting [77], Virus Throt-

tling [78], Maximum Entropy Detector [79], and NETAD [80]) can be implemented

in SDN using OpenFlow-enabled switches and the NOX controller processing only a

small fraction of the packets in any individual connection. OrchSec [81] proposes an

architecture to develop security applications in SDN networks that can be spawned

across multiple (possibly different) NOSs. The authors discuss increasing iterations

of the architecture as well as a detailed example on how to develop an application

that addresses problems of DNS amplification attacks (a type of Distributed Denial of

Service (DDoS) attack). SDN-Guard [82] proposes a scheme to protect SDN networks

against Denial of Service (DoS) attacks by rerouting, adjusting timeouts of rules, and

aggregating rules of malicious flows. SDN-Guard relays switch-to-controller packets

to an external IDS that informs the threat probability of each flow. FleXam [83]

addresses the problem that IDSs have to inspect massive loads of traffic to perform
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security analysis. The authors propose a sampling extension for OpenFlow in the

form of an additional “sample” action. The extension allows the controller to poll a

reduced number of packets (based on stochastic or deterministic sampling) and access

only specific parts of the packet contents (e.g., only headers, only payload). Neu et al.

present a lightweight IPS [84] that utilizes switch counters to prevent port scanning

attacks. Network Security Caps can benefit from the approach to not only enforce

policies that are embedded in configuration files but also protecting end systems from

port scanning attacks.

HoneyMix [85] and HoneyProxy [86] are SDN-based systems that aim at de-

feating honeypot well-known detection techniques [87, 88]. Zhao et al. [89] propose

a fingerprint hopping method that uses moving target defense to interact with a net-

work attacker in a honeynet. PoLanCO statements could be written to direct infected

hosts to any of these systems. Lastly, Community Connect (CoCo) [90] allows the

creation of on-demand VPN services via an easy-to-use web portal without requiring

network operators to manually configure network devices. We believe that our ex-

ception system could leverage the dynamic nature of CoCo to offer the deployment

of on-demand VPN services.

2.4 Network Programming Languages

We described in the previous section various frameworks and systems addressing

policy enforcement practices in an SDN network. In the majority of the cases, the

network applications were developed using general-purpose imperative programming

languages (e.g., java, python, C++) to interact with the services, APIs and abstrac-

tions provided by several NOSs (e.g. Floodlight, ONOS, OpenDaylight, etc.). This

section presents existing work in a new class of languages called network programming

languages (NPLs). NPLs are a type of Domain-Specific Languages (DSLs) developed

to write network applications where the network operator specifies what must hap-
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pen to arriving network packets rather than how it is done. As a result, network

programming languages are mainly written on top of declarative programming lan-

guages (with the exception of Pyretic [68]) although some NPLs follow a functional

reactive programming approach for event-driven applications where network events

(e.g. resource discovery, link congestion) trigger policies that are expressed in terms

of allow-or-deny actions applied to underlying switches. NPLs are surely a higher-

level abstraction than traditional per-device configurations. However, we suggest

that NPLs are not suitable for policy definition because they impose a steep learning

curve on network operators who historically have not been application developers but

rather network application users. We list NPLs below for completeness and acknowl-

edge that most of them could be used as the mechanism that generates configurations

(OpenFlow rules) of the policy language we present in this dissertation. NPLs have

considerably evolved since the inception of OpenFlow and the adoption of NOX [75]

as the default control plane back in 2008. FML [91] was NOX’s de-facto policy lan-

guage that triggered policy conflicts due to distributed authorship within a single

policy domain. Nettle [92] brought in the manipulation of series of messages rather

than individual message processing. Procera [93] let developers express policies based

on external events (e.g. QoS, intrusion detection). Frenetic [94] and Flog [95] propose

a three-stage approach for NOSs policy enforcement: (1) query network state, (2) ex-

press policies, and (3) reconfigure network. Both NPLs hide low-level details relative

to rules and network events. Regular expressions were introduced in FatTire [96] to

describe network paths (e.g. “*” represent all traversing paths). The authors of Net-

Plumber [97] introduced Flowexp, a language that also relies on regular expressions

and whose goal is to check constraints on the history of flows. Pyretic [68] intro-

duced the parallel and sequential composition operators in python programs to allow

for collaborative application development. Netcore [98], based on Frenetic, provides

an enhanced compiler that divides programs into two pieces, one that runs on the
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switches and another that runs on the controller. Flowlog [99] resembles SQL and

presents an interface that treats the control- and data-planes as one individual plane.

Merlin [100] and Kinetic [101] are more advanced frameworks that provision net-

work resources (e.g., bandwidth) and provide abstractions that automate changes in

network policy. NeMo [102] is one of the first attempts for expressing human intent-

based policies to create virtual networks via commands that are sent along REST

calls. Lastly, MPI [103] proposes a service-oriented policy language characterizing

policies as services established between two end nodes (e.g. hosts, subnets) through

a traffic specification pattern (e.g. HTTP, SSH) that traverse any number of net-

work functions (e.g. load balancers, byte counters, firewalls). This policy language is

heavily based on PGA [53].
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Chapter 3. PoLanCO: A Policy Language for Campus Operations

Network policy definition is a key component in network deployment and adminis-

tration. Defining policies ensures that operations in universities are legitimate and

secured, follow standards and specifications, abide by federal regulations, align with

business objectives and procedures, and ensure adequate provisioning of services.

Committees or groups of business experts consisting of high-ranked senior employees,

referred to as Policy Writing Committees (PWCs) in this dissertation, are usually

the authors of network policies. However, the points of view of PWCs typically fo-

cus more on the global requirements and procedures of the organization rather than

the low-level configuration details needed to adapt network devices to support the

network policies. The documents that PWCs create are oftentimes called Acceptable

Use Policies (AUPs). AUPs use generic terms and vague wording (business jargon)

and are commonly the only reference point and source of truth for network opera-

tors to configure network devices to enforce policy. Consequently, network operators,

based on their expertise and interpretation, have to carefully read the AUPs to un-

derstand the purpose of the policy, extract relationships and conflicts among the

AUPs, and derive the technical details and enforcement mechanisms required to de-

ploy the policies. For example, network operators issue CLI instructions on network

devices (e.g. switches, routers, middleboxes, etc.), and server administrators modify

application-specific configuration files to enforce AUPs.

Clearly, there is a substantial gap between the definition of a policy and its

enforcement that makes the policy translation process manual and error-prone for

network operators and system administrators. Nevertheless, with current advance-

ments in network architectures and existing practices based on business rules and

procedures, it is possible to develop software-based intermediate mechanisms that
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can automate the translation from of imprecise AUPs into valid and correct network

configurations.

In this chapter, we introduce a Policy Language for Campus Operations

(PoLanCO) based on (1) current technologies used in businesses for policy definition

via Business Rule Management Systems and (2) the Network Security Caps policy

enforcement layer presented in Chapter 4. Network administrators and system

administrators can use PoLanCO to precisely define a large number of policies with

a simple human-readable syntax. PoLanCO provides a high-level abstraction that

hides the low-level details and syntax of device CLI instructions and configuration

files, and automates the deployment of policies on the network infrastructure based

on the fine-grained flows diverse applications generate. We present examples on

how to write PoLanCO statements that represent the AUPs that PWCs write and

show how the simplified PoLanCO statements enforce network policies in various

environments and locations of the campus network.

3.1 Motivation

In Chapter 1 we highlighted the importance of defining network policies in campus

network infrastructures. Network deployments are becoming larger and more com-

plex, requiring not only constant physical infrastructure renovations and hardware

refresh cycles (i.e., device installations, cabling) but also revised rules and policies

regarding how all these new devices should interact with each other and with any

existing system/service in the network.

Normally, the outcome of an organization’s PWC is a set of non-technical

policy document(s) (AUPs) that use business-like language to inform network users

about the current regulations governing IT infrastructure-related activities. Unfor-

tunately, the statements found in policy documents are predominantly imprecise and

make it hard for network operators to understand or know how to encode the pol-
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icy into the network equipment. Moreover, the current policy translation process

does not provide feedback to the PWCs in charge of writing the AUPs, in particular,

feedback from the network operators in charge of deploying the policies. PWCs do

not necessarily understand the low-level mechanisms used to enforce policies (e.g.

commands, configuration files, protocols) and thus do not understand the challenges

(and sometimes impossibility) of implementing the policies they write. Network oper-

ators, though issuing syntactically valid commands and configurations, could partially

and/or incorrectly enforce high-level policy due to misinterpretation of the written

policy statements.

Take for example the short excerpt from the Internet-facing web server secu-

rity guidelines found on the Carnegie Mellon University’s website [104] and shown

in Fig. 3.1. While PWCs are likely able to understand (most of) the contents of

the high-level policy document excerpt, there is hardly a direct association between

guidelines expressed in the AUP with the low-level details (i.e. variable definitions,

port numbers, syntax) found in the configuration files of web servers. As new, more

complex, technologies continue to be developed, associating policy documents with

enforcement mechanisms becomes harder. For example, not long ago Apache [105]

was the de facto solution for hosting a web site. However, newer solutions such as

Flask [106] or Nginx [107] are commonplace today due, in part, to their “easy-to-use”

setup nature and other capabilities they offer (e.g. efficient load-balancing, proxy

services). Fig. 3.2 shows a snippet of an Nginx web server configuration file imple-

menting the policy. After comparing the policy with the server configuration file,

we can see that there is no direct mapping between the high-level statements (the

policy definition) and the configuration details (the policy implementation). In fact,

they could be in conflict. Take for example the guideline shown in line 1 of Fig. 3.1:

“Configure web server to meet recommended vendor best practices”, system and net-

work administrators responsible for setting up the server could interpret the portion
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“recommended vendor best practices” as configuring the web service software with the

default settings. However, the default settings normally open port 80 (i.e. HTTP)

in both IPv4 and IPv6 (see lines 2-3 in Fig. 3.2) in the server. Enabling port 80

may be undesirable as it allows the transmission of web traffic in clear text, possibly

exposing authentication credentials or other sensitive information. Moving forward

in the policy document, line 3 requires that the server enables necessary web services

and disables all others. Though the configuration file does allow an administrator to

specify the port on which the web service will listen to incoming connections, dis-

abling other unnecessary services is typically performed via OS utilities and not the

web service configuration file.

1 4. Configure Web server to meet recommended vendor best practices

2 - Install the Web server software on a dedicated host

3 - Enable necessary web services; Disable all others.

Figure 3.1: CMU web server policy excerpt

nginx.conf

1 server {

2 listen 80 default_server;

3 listen [::]:80 default_server;

4 server_name example.com www.example.com;

5 root /var/www/example.com;

6 index index.html;

7 try_files $uri /index.html;

8 }

Figure 3.2: Example web server (Nginx) configuration excerpt

Moreover, it is hard for network operators to recall what policies caused the

current state of a configuration file. It would be beneficial if network operators

could use technically-precise documentation to not only track changes in configuration
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files but also as a way to obtain feedback from the PWC–that is, do these precise

statements match what the PWC intended in the original policy? Answering the

question is even more challenging if we take into account that configurations could

have been written in the past (months or years ago) by other network operator (with

varying expertise and skills) and perhaps under different policies.

Besides the lack of feedback between PWCs and network operators, the trans-

lation of high-level policies into low-level configurations today is for the most part

manual. Even under the assumption that network operators are able to accurately

abstract out technical details and commands from AUPs, configurations need to be

individually pushed to the set of network devices enforcing the network policies. Al-

beit possible—after all, this is how policies have been implemented thus far—this

approach to policy enforcement is error-prone, time consuming and difficult to verify.

In fact, others [108, 109] have reported that human errors occurring during device

configuration are the main cause for network outages and unexpected behaviors in

networks.

As shown in Section 2.3, challenges associated with human/manual config-

uration in network management has been one of the main motivations behind the

development of emerging network architectures that try to simplify and centralize

configuration/management [40, 38, 109]. The ability of an SDN controller to push

out configuration (in the form of rules) to routers/switches has the potential to re-

duce the intervention of operators during the implementation of AUPs. Further, the

integration of SDN with automated systems that implement business policies present

an opportunity to adapt solutions from the business world to network configuration

challenges, bringing PWCs and IT staff together in AUP enforcement tasks.

We introduce a “middle-ground” mechanism in the form of a DSL (called

PoLanCO) to tackle the challenges network administrators face translating policy

into configuration. Specifically, network operators are now able to convert high-level
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guidelines and directives into a series of short, human-readable and technically precise

(PoLanCO) statements. The produced list of statements could be used to validate if

the abstracted “middle-level” policy (i.e. PoLanCO statements) is indeed what the

PWC expressed in the high-level policy documents. In other words, feedback becomes

a key component of the translation process because it allows network operators to

revise and change the derived (PoLanCO) statements to appropriately represent the

policies defined by the PWC. In addition, since the derived short technical statements

follow a structured human-readable syntax, software that uses emerging technologies

in networks and business operations can be developed to ensure that the statements

are automatically translated into low-level enforcement mechanisms. Thus, reducing

the intervention of operators in the deployment of the policies.

In the following section, we describe the design goals of PoLanCO. We cover

aspects such as the need to know the characteristics and roles of network systems,

the goal of remaining vendor and protocol neutral, the emphasis on avoiding the

use of network-level identifiers to express policies, and the opportunities to improve

workflows that depend on the dynamics of the network (e.g. changing the role of a

network node, or deploying an exception to global network policies).

3.2 Design Goals

As noted earlier, technically-precise, human-readable language would be useful as a

way to provide feedback between PWCs and network operators, and to automate the

translation process from policies into low-level configurations. We describe below the

set of features and characteristics that such a language should have:

Avoiding Low-Level Network Identifiers: Low-level network identifiers are, un-

surprisingly, commonplace when operators reason and analyze how to translate

policy documents into configuration files or device CLI instructions. Low-level

network identifiers are the type of information that network devices and end

52



www.manaraa.com

systems expect as input in order to process network traffic. However, thinking

about policy at such a low level of technical detail is unnatural for humans that

better reason in terms of words, characteristics, roles, and the like. Take for ex-

ample the way we connect to websites. We use human-readable domain names

(e.g. www.google.com, www.uky.edu, www.wikipedia.org) as opposed to their

corresponding IP addresses (even network operators prefer not to use them!).

Instead of using network identifiers, we can assign each identifier a role and/or

trait (e.g. group of users, device types, type of traffic) and raise the level of

abstraction of technical configurations. Human-readable statements based on

such assignments can (1) be easily understood by PWCs, (2) help move to-

wards the documentation of policies that were previously deployed, and (3) be

expanded by translation mechanisms into low-level details when needed.

Network Description: The proposed language will need to have terms to describe

common networking concepts like file servers, web servers, printers, firewalls,

secure channels, blocking, mirroring, etc. and the translation mechanisms used

to install low-level configurations will know what portions of the network con-

figurations should be pushed to, and how the configurations should look.

Event-Aware: While some of the policies that need to be enforced on networks do

not change over long periods of time, some policies are dynamic, periodic, or

based on the current status of the system. The language should allow the spec-

ification of the type of actions that must be triggered whenever a relevant event

happens, thus providing context to the policy. Events may include situations

like the addition of new equipment to the network, detection of a malicious

actor or an infected machine, changes in the policy, current time of day, etc.

Extensible and Vendor-Agnostic: The language should be generic enough to

hide proprietary, vendor-specific characteristics of the network as well as the
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complexities of the low-level mechanisms present in the network. Resolving

what features or protocols to use in order to enforce the policy should not be

part of the language used to define the policies but a part of the system that

translates language statements into low-level instructions. As we described in

earlier chapters, networks have continuously evolved in complexity over the

years. Whether it is the type of systems that are part of the infrastructure, or

the features supported by existing equipment, we require the language to be

easily expandable and allow for new types of policies to be specified.

Exceptions: The language should allow for the explicit specification of authorized

exceptions. As we will describe in Chapter 5, exceptions are a common part of a

policy ecosystem and the current process to deploy them is largely manual. IT

departments often require that users in need of an exception submit a request

(say via e-mail or a web form) to obtain permission and install an exception.

Typically, a PWC analyze exception requests every few weeks or months. Once

the risks and implications of the request are evaluated, the deployment of the

exception finally takes place (or the request is rejected). While we agree that

pre-authorization is important for the deployment of exceptions, the current

process is manual and heavily dependent on human intervention (see Chapter 5).

We want to make PoLanCO the middle layer where both policies and their

exceptions can be written and automatically deployed. The language will help

keep the documentation consistent over time, while handling dynamic workflows

that require timely-deployed short-lived exceptions.

3.3 Approach: Leveraging Business Rule-Based Management Systems

Defining and enforcing policy based on a series of facts, events, and characteristics

is not unique to networking. For example, businesses define policies in terms of the

products and services offered, the interactions with existing and prospective cus-
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tomers, and the federal and state legislation businesses must abide by. With a goal of

automating processes that were otherwise manual or error-prone (e.g. profiling cus-

tomers), business management and IT departments joined efforts to develop decision

systems, called BRMSs, that make choices based on a given set of facts and events.

At a high-level, BRMSs consist of four main components, namely, a rule repos-

itory, a set of tools for rule authoring and maintenance, data objects that represent

the current facts in the system, and a runtime environment that invokes the rules.

Fig. 3.3 shows how the components of a BRMS interact with each other. The rule

repository is the centralized place (similar to a database) where all rules are stored.

A business rule can be defined as a statement that aims to influence or guide behav-

ior in an organization [110]. A rule is the place where the decision logic (i.e. what

to do) is separated from the core production application code (e.g. how to do it).

Business rules are created, modified and removed using rule authoring tools. Author-

ing tools help business experts and IT staff in the definition, design, documentation,

and modification of business rules. BRMS vendors and/or third-parties develop these

tools that vary from simple markup syntax to sophisticated web-based applications.

Business rules are defined based on the current facts (also called working memory) of

the system. Facts may be added to the runtime environment both at startup or as a

consequence of other rules being activated. The runtime environment, also called rule

engine, implements a continuous execution cycle based on the rules and the current

status of facts when each rule is being evaluated. The output of the rule evaluation

include the addition (or modification/removal) of facts—possibly triggering another

set of rules—and the execution of external procedures, for example, production code

that enforces the decision that has been made.
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Figure 3.3: High-level architecture of a BRMS

3.3.1 From Business Rules to Network Policies

BRMSs normally come with syntax restrictions to write business rules that are heav-

ily influenced by the underlying programming language used to develop the actual

BRMS. Currently, there is no unified or standardized language to specify rules seam-

lessly across BRMSs solutions. However, the structure of the rules is, for the most

part, the same. In addition to programming language preambles (e.g. environment

variable definition, library and data structure importing), business rules have two

main constructs, namely, a conditional (antecedent) and a body (consequent) [111].

The conditional, typically represented by the keyword when, is used to express the

set of constraints that must be satisfied in order to activate a rule. Constraints are

written in terms of the properties of the data objects that are part of the work-

ing memory of the BRMS. The body, typically represented by the keyword then,

contains the set of actions that are executed if the constrains are satisfied. Unlike
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constraints, actions may include API calls to either local processes or external services

(e.g. logging systems, monitoring frameworks, network equipment), or modifications

to working memory data objects. Some example rules that use the Drools [112]

syntax are shown in Fig. 3.4. The first rule (i.e. welcome.rule) shows an example

banking organization’s policy for customers whose loan was approved (line 3). The

body of the rule (lines 5-6) includes the actions that must be executed whenever a

loan is approved. Note that in welcome.rule, the actions do not modify the status

of the working memory but rather execute external processes (logging and mailing).

However, the action in line 7 of the second rule (i.e. auto-approve.rule) does cause

a modification to the working memory. The rule changes the status of a loan appli-

cation when the amount requested is less than 5,000 dollars and the credit score of

the applicant is greater than 675 (lines 3-4), thereby causing the welcome rule to be

triggered whenever a loan is auto-approved.

Business rules are lists of statements that determine whether some action

should happen (or be avoided) based on well-defined constraints. As presented ear-

lier, the rules are often expressed in BRMSs using a specific syntax that is typically

provided by the BRMS vendor. BRMSs are flexible mechanisms that could be lever-

aged to enforce policies in networks in the same way that it enforces business policies

and automates processes. The flexibility of a BRMS comes from the fact that any

data object can be part of the working memory. Based on the examples provided

above, a banking institution would include relevant information like customer data

(e.g. age, credit score, active products, etc), or product information (e.g. type of

loan, amount requested), as facts in the BRMS’s working memory. Moreover, facts

associated with events (e.g. applying for a product such as a credit card or a loan)

can also be registered in order to expand the type of policies that can be written as

a result of an event. Network policy management adheres to the same model. Some

of the facts needed to enforce network policies can be found in information about
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welcome.rule

1 rule "welcome message"

2 when

3 $app: LoanApplication( status == status.APPROVED);

4 then

5 LOGGER.debug("Sending welcome e-mail to customer for loan ",

$app.custID, $app.ID);↪→

6 mailService.send($app, mailType.WELCOME);

7 end

auto-approve.rule

1 rule "auto-approve loan"

2 when

3 $a: LoanApplication(amountRequested <= 5000)

4 $c: Customer( id == $a.custID, creditScore >= 675)

5 then

6 LOGGER.debug("Auto-approving loan for $ to customer ",

$a.amountRequested, $a.ID);↪→

7 modify ( $a ) setStatus ( status.APPROVED )

8 end

Figure 3.4: Example business rules written in a BRMS (Drools)

the nodes and connections of the underlying topology. For example, consider the

policy commonly found at various university websites (shown in Fig. 3.5) [113] that

requires network operators and system administrators to disable insecure protocols

from network devices and systems in the network. A BRMS can automate the im-

plementation of the policy. Fig. 3.6 shows an example Drools code that enforces the

policy. Assuming nodes are part of the BRMS working memory, the conditional of

the rule (line 3) selects all the nodes where the policy will be enforced (i.e. nodes

that are of type NETDEVICE). Then, the body of the rule includes configuration details

need to enforce the policy. For example, line 5 specifies protocols numbers of insecure

protocols such as File Transfer Protocol (FTP), telnet, and HTTP; in line 6 Config

objects are created using information about each selected node in the conditional,
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the protocols, and the action representing the policy decision; and line 7 launches an

internal function that uses the created Config objects to push actual configurations

(e.g. OpenFlow rules) into the selected network nodes.

Applications which transmit sensitive information over the net-

work in clear text, such as telnet and ftp, are prohibited and

will be blocked

Figure 3.5: Excerpt from the network usage policy of the University of Missouri-St.
Louis

1 rule "disable-insecure-protocols"

2 when

3 $n: Node( type == type.NETDEVICE);

4 then

5 protocols = new ArrayList<Integer>(Arrays.asList(21,23,80));

6 cfg = new Config($n, protocols, PolicyAction.BLOCK);

7 ConfigPusher.push(cfg);

8 end

Figure 3.6: Example Drools code that generates configurations for network devices
in working memory

As described in subsequent sections, BRMS code has the potential to enforce

a large number of policies provided the working memory contains specific details and

characteristics about the network such as the role a node has in the network (e.g.

firewall, L3 router, L2 switch, printer, etc.), the enforcement mechanisms every node

supports (e.g. different OpenFlow versions, remote CLI commands, NETCONF), the

type of node (e.g. network device, end system), the status (e.g. infected, quarantined,

up, down), and the way nodes are connected with each other (e.g. link capacities,

VLAN information).
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3.4 Implementing a Domain-Specific Language

BRMSs provide tools (typically out-of-the-box) for writing business rules that hide the

complexities and verbosity found in traditional programming languages. Nonetheless,

even though the rule-definition syntax is greatly simpler than regular programming

language code, it contains several elements (e.g. symbols, keywords, identifiers, an-

notations) that are not typically found in human sentences; therefore, readable state-

ments are difficult to construct using BRMS-specific code. For example, the body

part of a Drools rule is particularly hard to read because it often contains (multiple

lines of) java code to launch other application processes (e.g. line 6 in Fig. 3.4 or

lines 5-7 in Fig. 3.6).

By contrast, PoLanCO was intentionally designed to severely restrict the token

namespace that operators may use to write human-readable policies. Yet, PoLanCO is

translatable to machine code. Fig. 3.7 shows a concrete example of a top-down trans-

lation pipeline (i.e. set of steps) that starts with the AUP written by a PWC [114]

and ends with the generated Drools code that pushes network configurations onto the

network. Unlike the contents of policy documents written by PWCs (e.g. the security

policy at the top of the pipeline), network operators write PoLanCO statements that

are human-readable, technically precise and derived from the contents of an AUP.

The statements allow network operators to have an unambiguous interpretation of the

policy that is being enforced without getting involved in the complexities of complex

Drools (and java) code.

Once a network operator writes a PoLanCO statement s, s is divided into

groups of words w0, ..., wn where each wi is passed as parameter to a translation

function T (w) that generates valid Drools code. Table 3.1) shows five w inputs and

their corresponding Drools code. While the first two groups of words (i.e. policy

and policy priority) are simple word replacements, the rest of the groups of words

generate more verbose Drools code that is hidden from an operator’s perspective.
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The resulting Drools code for the firewall policy example is shown at the

bottom of the pipeline. The generated code not only interacts with the working

memory of the BRMS (i.e. identifying firewall nodes) but also launches back-end

methods that build OpenFlow rules (i.e. ConfigGenerator), resolves types of traffic

and end points (i.e. aliasEvaluator), and issues REST requests to the NOS to push

the configurations (i.e. ConfigPusher).

Table 3.1: Translation function T (w)

PoLanCO Grammar w Drools Code T (w)
policy rule

policy priority salience

[Nn]ode is a {type}
$n: NetDevice(

$labels: labels contains "{type!uc}");

{action} {param} traffic

policies.add(

CfgGen.fromNode(

$n, PolicyAction.{action!uc}, {param},

from {src} to {dst}

aliasEvaluator.eval("{src}"),

aliasEvaluator.eval("{dst}");

CfgPush.push(policies);

Translating PoLanCO statements into executable Drools code is only a portion

of the complete workflow that starts with PWCs writing AUP documents and ends

with low-level device configurations enforcing the policies. Assuming an operator has

read and interpreted the contents of AUPs, Fig. 3.8 shows the steps that happen

when a policy is actually enforced in the network using PoLanCO (the translation

process is skipped as it was already described). First, the team of network operators

must agree on a descriptive meaning for every low-level identifier needed to enforce

a policy. For example, associating (1) IP ranges such as 10.10.0.0/20 to a group

of devices like mobile devices connected in the university library, (2) individual IP

addresses (123.456.1.3) to university authorized servers such as DNS or Dynamic

Host Configuration Protocol (DHCP) servers, or (3) port numbers (80, 443, 9100)

with types of traffic such as web or print jobs. The association between identifiers
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Network Security / Firewall Policy
1. Purpose

Access to information available through the universitys network systems must be strictly controlled in accordance

with approved network access control criteria, which are to be maintained and updated regularly.

...

2. Definitions

Firewall: A firewall is an information technology (IT) security device which is configured to permit or deny data

connections set and configured by the organization’s security policy

3. Policy

...

e.ii) All inbound network traffic to the campus is blocked by default, unless explicitly allowed.y
PoLanCO Statement

policy "firewall policy"

when

Node is a FIREWALL

then

Block traffic from Internet to campus networky
Translation Function T (w) (see Table 3.1)y

Drools Code

rule "firewall policy"

when

$n: NetDevice($labels: labels contains "FIREWALL")

then

Set<PolicyConfig> policies = new HashSet<PolicyConfig>();

policies.add(ConfigGenerator.fromNode($n, PolicyAction.BLOCK, "",

aliasEvaluator.eval("Internet"), aliasEvaluator.eval("campus

network"));

↪→
↪→
ConfigPusher.push(policies)

end

Figure 3.7: Translation pipeline from a high-level network policy into Drools code

and high-level descriptions needs to be first fed into the system before any PoLanCO

statement is written. A mechanism to specify identifier-description associations is

described in Section 3.4.1. Additionally, in order for the policies to be implemented in

the network, the translation system (that translates PoLanCO to SDN configurations)

must discover the network topology and role of each node in the network graph. The
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underlying SDN network is assumed to be capable of discovering the campus network

topology and learning the role of each node in the topology. Once the topology

is discovered, it becomes part of Drools’ working memory; at this point, network

operators can start writing multiple policies using PoLanCO.

All the PoLanCO statements are evaluated and mapped into Drools code

following the procedure explained above. The back-end components (written in Java)

launched by the generated Drools code contact the SDN Northbound Interface via

standard REST API requests. The SDN controller processes these requests by sending

FLOW MOD OpenFlow messages that instruct the switch (or switches) to add entries

to the flow table; thereby, enforcing the policy (Chapter 4 describes the enforcement

layer in more detail).

3.4.1 Network Information Gathering

One of the reasons why it is difficult to express campus network policies in terms

of low-level identifiers is that often it is not straightforward to map those technical

details into high-level entities. Even though operators might be familiar with low-

level networking addresses, protocols, services, etc. using such jargon as a means

of feedback with PWCs hampers the opportunity to establish a two-way dialogue

between both parts.

In order to improve the expressiveness and precision of a policy, every low-level

network identifier must have a high-level meaning associated to it. The association is

what enables the construction of precise human-readable network policy statements.

For example, MAC and IP addresses can identify individual users, subnets could iden-

tify groups of users, VLANs and port numbers could represent types of traffic. Note

that these associations are already being made when operating a campus network.

However, hardly ever the meaning of low-level identifiers is used in AUPs.

In order to incorporate the mappings into PoLanCO, we require the topology
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1. Network Information Gathering

Associating Descriptions
with Low-Level Identifiers

(IP ranges, VLANs, types
of traffic, etc.)

Discovers

SDN
Controller

Added to

- Network Topology
- Roles of Nodes in Network

2. PoLanCO Statements

3. Policy Translation and Enforcement

T(w)PoLanCO BRMS
Code

Config Pusher
(Java REST Client)

REST API
SDN Controller(s)

Network Devices

Configs

Alias File Define

Network
Operators

BRMS Working Memory

0. AUP Documents

when ... then ...

when ... then ...

when ... then ...

Figure 3.8: Workflow to enforce policies using PoLanCO

discovery to be performed before any policy is defined. Gathering the network infor-

mation can certainly be done in multiple ways. For example, Cisco DNA [19] relies

on their Identity Services Engine to map network user IDs to various end systems

(a similar approach can be achieved using alternative implementations of RADIUS

servers). For simplicity, in our prototype we perform information gathering on two

fronts. Namely, an alias file and the discovery capabilities of SDN controllers. Net-

work operators must define the associations in a static file that we refer to as alias

file. The file is formatted in YAML [115]. Fig. 3.9 shows an excerpt from an example

alias file.

The format used to represent each piece of network information is simple yet
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template.alias

1 alias: private-addresses

2 specs:

3 - ip: 10.0.0.0/8

4 - ip: 172.16.0.0/12

5 - ip: 192.168.0.0/16

6 ---

7 alias: netlab-net

8 specs:

9 - ip: 123.100.22.0/27

10 ---

11 alias: ceph-storage

12 specs:

13 - &ceph

14 ip: 123.100.22.3

15 ---

16 alias: amazon-web-bucket

17 specs:

18 - &amz

19 ip: 54.231.0.0/17

20 ---

21 alias: storage-systems

22 specs:

23 - *ceph

24 - *amz

25 ---

26 traffic: web

27 specs:

28 - port:

29 - protocol: tcp

30 - number: 80

31 - port:

32 - protocol: tcp

33 - number: 443

Figure 3.9: Excerpt from an example alias file

extensible (in accordance with the language design goals). The alias file can be

either modified manually or generated as output of a more sophisticated service (like

RADIUS). Each item of the alias file is separated by three dashes (e.g. lines 6, 10,

15, etc.). Currently, there are two main components per item, namely, an alias (or
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a traffic type) which is the actual word that is to be used in PoLanCO statements,

and a list of specifications (specs) that contain information regarding the low-level

identifiers associated with a given alias. The code generated by the transformation

function T (w) maps the aliases back to the corresponding low-level identifiers. YAML

allows reusing objects that were already defined in the file (avoiding duplication) by

using anchors, where & is the anchor symbol. For example, the alias “storage systems”

(line 21) comprises the ceph storage address (line 11-14) and a subnet of Amazon Web

Services S3 buckets (line 16-19). In that way, it is possible to define an individual

policy statement for transfers to different types of storage systems (as we will show

in the evaluation of our exception system in Chapter 5) even though one system is

located in the campus network whereas the other is a public cloud service.

The second piece of information used during the policy translation is the dis-

covered topology. While a group of network operators could potentially draw a sketch

on how nodes are deployed over the network, the approach would not only take a long

time but also does not take into account dynamic events that occur in a network (e.g.

a server reboot, a switch disconnect, a damaged link, or a new mobile device con-

necting to the wireless network). NOSs provide built-in topology discovery features

that create an initial topology sketch comprised of OpenFlow-enabled devices, the

connections between them, and the connections to attached devices discovered when

the NOS inspect ARP or DHCP packets coming from the end systems.

Unfortunately, NOSs discovery features only distinguish between two types of

nodes, OpenFlow switches and end systems when, as described in Chapter 1, networks

are composed of many heterogeneous systems (e.g. firewalls, printers, badge readers,

virtual machines, mobile devices, storage nodes, IDSs, credit card terminals, etc.).

The alias file described above could be used to add properties to the discovered

nodes. For example, hosts discovered in the IP address range 123.100.22.0/27 can

be marked as “netlab” machines. In addition, operators may use traditional network
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management protocols (e.g. SNMP) to extract information from network devices

(both OpenFlow and non-OpenFlow) and add it as properties to specific nodes in the

discovered topology. Optionally, operators may also specify middlebox information if

the NOS discovers the interface(s) of the middlebox as independent end systems in

the initial topology sketch.

Fig. 3.10 presents an example topology stored in a graph database, specifically

a (Neo4j [116]) database. The NOS discovered the portion of the network enclosed in

red. Then, say, an automated system added a “FIREWALL” label to the top node.

Additionally, on the right-hand side of the figure, a portion of the non-OpenFlow net-

work (surrounded in blue) was discovered using traditional protocols such as SNMP

and LLDP, and labeled nodes for further use by the BRMS.

Figure 3.10: Augmenting topology information using OpenFlow and traditional pro-
tocols

3.4.2 Writing Policy Statements

Once the network information gathering is completed, network operators can write

policy statements using the PoLanCO syntax shown in Fig. 3.11.
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PoLanCO Rule Template

1 policy "policy-name"

2

3 [policy priority n]

4

5 [when

6 Node is [connected to] a device-type

7 then ]

8 Action [param] [traffic-type] traffic [from end point A] [to

end point B]↪→

Figure 3.11: Syntax of the Policy Language for Campus Operations

Table 3.2: List of values for each PoLanCO token

TOKEN TOKEN Values
device-type Firewall, Web Server, Switch, Printer, etc.

Action (param)
Allow, Allow-Only, Block,
Send to (Controller, IDS, HoneyPot), Mirror to (Port)

traffic-type Web, FTP, Video, Print Jobs, etc.
end-point netlab-network, storage-systems, authorized DNS, etc.

A policy always starts with the keyword policy followed by an operator-

defined name assigned to it. Policies can be assigned a priority that influences the

order of the policy processing by the BRMS rule engine; higher priority policies are

evaluated first. PoLanCO statements are written following the syntax shown in lines

5-8. The structure resembles the way business rules are defined using the keywords

when and then. In Fig. 3.11 there are four tokens that can be replaced with multiple

values (see Table 3.2).

The values of the device-type correspond to the labels added to the nodes in

the graph database during network information gathering. At present, PoLanCO

supports actions that include allowing (i.e. forwarding) legitimate traffic, blocking

(i.e. dropping) packets of a particular flow, sending packets of the matching flow to

an external entity (specified as a parameter) for further processing, and mirroring

(i.e. copying packets) to a particular port (if applicable) for out-of-band analysis.
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As we can see, gathering network information is vital for the definition of PoLanCO

statements. In terms of the syntax of the statements themselves, policies should be

written following the conditional-body structure of conventional business rules. For

policies that have to be applied in all the devices in the network, the conditional of

the PoLanCO statement can be omitted.

Last but not least, the power of the PoLanCO syntax is that with simple

combinations of words that describe the types of nodes or their relationships it is

possible to identify the appropriate set of devices where network policies can be

applied. We present some examples in Section 3.5.

3.4.3 Translation Layer

One of the design goals defined in Section 3.2 is to make PoLanCO agnostic to low-

level mechanisms used to enforce the policies. SDN controllers can send messages

using protocols like OpenFlow (and NETCONF) that facilitate the distribution of

rules and device configurations to equipment built by various vendors. However,

PoLanCO, as a network application, is tightly bound to the vendor-specific North-

bound Interface APIs and is hampered by the lack of a standard NBI among SDN

controllers.

Even though implementations of the NBI are intended to offer a common

programming abstraction to network applications, the interfaces vary widely across

NOSs (proprietary and open source); existing implementations include ad-hoc and

RESTful APIs, multilevel programming interfaces, file systems, or more specialized

APIs [109]. The NOS-specific designs for the NBI make it difficult for network appli-

cations (like PoLanCO) to evolve independently. Typically, applications end up tied

to a specific NOS even if the application is not using any NOS-specific concepts or

features, just common abstractions such as a flow, a port, the topology, etc. In reality,

what makes the application portability process hard is the fact that API methods
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and data structures vary, as opposed to the underlying conceptual abstraction.

Consequently, with state-of-the-art NOS solutions it is not possible to perform

policy translation in two NOSs software (given the same topology and same set of

high-level policies) without having to re-write the BRMS application code that pushes

configurations, learn new data models, APIs, and NOS-specific conventions.

To passively circumvent the network application portability problem, and in-

stead, allow PoLanCO to enforce policies in networks that are either controlled by

multiple controllers or change controller software regularly, we developed a REST

API TranslaTOR (RAPTOR) for OpenFlow controllers [52]. RAPTOR serves as a

single common NBI that is located amid the NOS and the BRMS components capable

of pushing switch-specific and SDN-protocol specific configurations into the network.

RAPTOR unifies the network information found in controller-specific data

models of multiple NOSs and puts them into one common generic data model that

can be used to make PoLanCO (or any other application) portable.

BRMS Process

Controller A Controller B Controller N

RAPTOR

Data Models
Switch

Port

Flow

Action

Match

APIs
/switches

/switches/<id>
[GET]

/configs
[GET POST

DELETE]
/docs

PLUGINS

Dictionary (yaml)
Abstract Parsing Methods

(Python)

Controller A

Dictionary (yaml)
Abstract Parsing Methods

(Python)

Controller B

...

Figure 3.12: RAPTOR layer to provide language portability
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Fig. 3.12 shows where RAPTOR is placed along the NBI of existing controllers

to provide portability for PoLanCO (to any underlying SDN controller). RAPTOR is

lightweight in the sense that it is stateless and does not prevent network applications

from using NOS APIs directly. RAPTOR creates object instances on-demand every

time a call is made to a controller, and returns the responses back in JavaScript

Object Notation (JSON) format to the BRMS process. Unlike the REST API of

some controllers, RAPTOR APIs follow the guidelines prescribed in the literature [61,

117] and perform various types of translations including Uniform Resource Identifiers

(URIs), HTTP verbs, and data models.

Fig. 3.12 also shows the internal building blocks of RAPTOR. First, RAP-

TOR defines a set of common abstractions that includes switches, ports, flow entries,

actions, flow match, etc. The data models representing the abstractions are com-

mon across all components of RAPTOR and the backend service of the BRMS that

generates the low-level configurations. Second, RAPTOR also defines a list of APIs

(Uniform Resource Locators (URLs)) that high-level applications (e.g. the BRMS

component that pushes configurations) access via REST calls in spite of the NOSs

controlling network devices. Lastly, each controller supported by RAPTOR is in-

cluded as a “plugin” composed of two elements, namely, a dictionary (in YAML [115]

format) of equivalences between RAPTOR and the controller’s conventions (i.e. field

names and values), and a file where abstract methods ought to be implemented in

order to adhere to the translation layer.

3.5 Examples

This section presents examples of how high-level imprecise policies found on several

academic institutions can be translated into simplified, human-readable statements

using PoLanCO. All the examples described below would need an associated alias file

that defines the port numbers of certain types of traffic (e.g. DHCP, DNS, FTP, or
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HTTP traffic) as well as IP addresses of known end systems (e.g. printers, DHCP

servers). However, to keep the examples short, the alias file is generally not shown.

In most cases, the file is rather straightforward to define (see Fig. 3.9 for an example

alias file).

The following examples show various types of campus network security poli-

cies. When possible, excerpts of the high-level (vague) policy found on the university

websites are displayed along with the PoLanCO statements written to represent the

high-level policies.

3.5.1 Disabling Insecure Protocols

Recall the example presented in Section 3.3 that introduced a clear-text prohibition

policy commonly found in university websites:

1 Applications which transmit sensitive information over the

2 network in clear text, such as telnet and ftp, are prohibited

3 and will be blocked

The relevant information needed to write PoLanCO statements appears in

lines 2 and 3 where types of traffic in the form of protocols (i.e. telnet, FTP) and the

corresponding action (i.e. prohibit, block) are specified. The PoLanCO statements

derived from the contents of the policy and the alias file generated to write the

statements are shown in Fig. 3.13.

The conditional part of the two PoLanCO statements is omitted because all

network devices on the campus network need to enforce the policy. Fig. 3.14 shows an

example topology where the policy is enforced at various places, namely, a firewall, a

router, and two switches. The definitions in the alias file cause the BRMS to generate

OpenFlow rules that drop incoming packets from any interface whose destination is

the either of the FTP control or data ports (20 and 21) and the telnet port (23).
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PoLanCO Statements

1 Block ftp traffic

2 Block telnet traffic

insecure-protocols.alias

1 traffic: ftp

2 specs:

3 - port:

4 - protocol: tcp

5 - number: 21

6 - port:

7 - protocol: tcp

8 - number: 20

9 ---

10 traffic: telnet

11 specs:

12 - port:

13 - protocol: tcp

14 - number: 23

15 ---

Figure 3.13: PoLanCO statements and alias file that implement a clear-text prohi-
bition policy

FIREWALLEDGE ROUTER

SWITCH A

SWITCH B

PRINTERPC

PC

LAPTOP

CAMERA

match: dst_port=20
action: drop
match: dst_port=21
action: drop
match: dst_port=23
action: drop

Controller

Figure 3.14: Enforcing a campus-wide policy that disables insecure protocols

The network configurations shown are in the form of OpenFlow version 1.3

rules. However, during the network information gathering phase, where every topol-

ogy node is added as an object to the working memory of the BRMS, each type

of device can be assigned a mechanism for policy enforcement (e.g. any version of

OpenFlow, NETCONF/Yang, iptables, remote SSH commands, etc).
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3.5.2 Securing Network Printers

Most printers come with a default configuration that allows users to start using them

out-of-the-box once the printer is plugged in to the network. Though out-of-the-box

functionality is appropriate for a home network, carelessly plugging printers in to

an enterprise network poses various risks because multiple unnecessary services are

enabled, an easy-to-guess administrative password is set by default, and printers can

be accessed from outside the network if they get a public IP assigned by mistake. If

compromised, a network printer could be used to steal data (e.g. contents of print

jobs), attack other systems in the network (e.g. DoS) or print an excessive amount

of spam messages causing waste in resources.

Some universities have published policies on how to secure network printers.

Fig. 3.15 shows a printer policy found on the University of California–Berkeley’s

website [118].

1 To secure your printers from unauthorized access, print

2 configuration alterations, eavesdropping, and device compromise

3 follow these printer security best practices:

4

5 - Campus printers should not be exposed to the public Internet.

6 - Use encrypted connections when accessing the printers

administrative control panel.↪→

7 - Do not run unnecessary services.

Figure 3.15: Printer policy of the University of California–Berkeley

The statements in the policy are not technically precise. In fact, the state-

ments are guidelines and not mandatory policies. However, in order to protect net-

work printers and avoid the security risks entailed due to misconfiguration, network

operators can write PoLanCO statements that enforce the practices outlined in the

guidelines.
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For example, the guideline in line 5 could be addressed in two ways. First, if

every end system with a publicly reachable IP (e.g. 128.163.4.50) is labeled such that

it can be distinguished from systems with private IP addresses, then the assigned label

could be included in PoLanCO statements that block traffic to/from a misconfigured

printer. Second, since some network printers are configured with an IPv6 address

that is globally unique, there is a potential risk for the printers to be reachable from

the Internet. Given that normally SDN controllers cannot push configurations to end

systems, the network operator could write a PoLanCO statement that blocks IPv6

traffic destined to a printer at the closest network device where the policy can be

enforced.

PRINTER CS
172.23.7.50

SWITCH A

PRINTER PUBLIC
128.163.53.5

SWITCH B

PRINTER CPH
2001:db5::::8329

SWITCH C

Campus Core

Firewall

Internet

Figure 3.16: Three printers in the network with their IP assignments

Fig. 3.16 shows a topology where three printers were (mis)configured and

labeled during the topology discovery phase. Naturally, the common label across all

the printers is PRINTER. However, note that the printer attached to SWITCH B was also
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marked with the label PUBLIC as it was assigned an IP address in the 128.163.0.0/16

public network. While the printer attached to SWITCH C was labeled with CPH (the

College of Public Health), the printer is still misconfigured and susceptible to being

accessed from the Internet via IPv6. Fig. 3.17 shows the network statements that

would enforce the printer security guidelines.

1 when node is connected to a PUBLIC PRINTER

2 then block all traffic

3

4 when node is connected to a PRINTER

5 then block ipv6 traffic

Figure 3.17: PoLanCO statements securing printers from external access

The first statement (lines 1-2) enforces the policy only at SWITCH B because it

is the only network device that is connected to a node with the labels PRINTER and

PUBLIC. The generated OpenFlow rule uses the printer’s IP address (128.163.53.5)

to block all traffic coming in and going out of the public printer. Similarly, for the

second statement (lines 4-5), the policy is enforced at switches A, B, C because they

are all connected to a node with the label PRINTER. In this case, a generic OpenFlow

rule blocking IPv6 traffic to the printers enforces the policy.

The rest of the guidelines such as disabling unnecessary services are similar to

the previous example (Section 3.5.1) where insecure protocols are disabled campus-

wide. For the printer example, the conditional part would not be omitted and instead

should identify only the nodes that have a printer connected to them. In addition, the

body part of the statement should block what the network operator consider as an

“unnecessary” service (e.g. HTTP, FTP, SNMP, etc.) from a printer management

perspective.
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3.5.3 Firewall for External Connections

Firewalls are often the first line of defense of any network, including campus networks.

It is not uncommon to see policies and guidelines for network traffic that is destined

to/from the Internet. Consider an excerpt from a policy involving the perimeter

firewall at the University of Missouri-St. Louis [113] shown in Fig. 3.18.

1 All UMSL network traffic to and from the Internet must go through

the firewall.↪→

2 Any network traffic going around the firewall must be accounted

for and explicitly allowed by the Computer Security Incident

Response Team (CSIRT).

↪→

↪→

Figure 3.18: UMSL Firewall Policy

Enforcing the core of the policy (line 1) is straightforward in PoLanCO. As-

sume the topology discovered during the network information gathering is the one

shown in Fig. 3.19. There are switches inside the network that send traffic out of

the network and switches outside the campus network that forward data into the

network.

ISP Main

ISP Backup

Firewall

Firewall

EDGE ROUTER

EDGE ROUTER

OUTER SWITCH

OUTER SWITCH

INNER SWITCH

INNER SWITCH

Campus
Core

Figure 3.19: Example topology discovered at the edge of a campus network

The PoLanCO statements that enforce the policy are shown in Fig. 3.20

Both PoLanCO statements would subsequently be translated into the appro-

priate network configurations for both INNER and OUTER switches. The translation
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process will identify information such as the designated interface where packets must

be forwarded, and the IP addresses the rules need to match on (e.g. the campus net-

work is 134.124.0.0/16). Moreover, the blue link connecting the upper OUTER SWITCH

with the lower INNER SWITCH offers an alternative path to traditional routing proto-

cols (e.g. OSPF, BGP) that bypasses the firewalls. The PoLanCO statements force

all traffic to avoid the alternative route and appropriately send all traffic through the

firewall.

However, note that network operators can use a policy priority in the

PoLanCO statements to explicitly allow exceptions to the policy and allow the usage

of the path that bypasses the firewall. Likewise, the rest of the policy (line 2 in

Fig. 3.18) that discusses the allowance of exceptions to the policy (i.e. bypassing

the firewall’s inspection) could be enforced via an exception system such as the one

described in Chapter 5.

3.5.4 Rogue Servers

PoLanCO can enforce policies that forbid the deployment of rogue servers—a system

that is providing services to the network that IT staff is not managing. Take for

example the policy found at the Oberlin College and Conservatory [119] shown in

Fig. 3.21.

1 when node is an INNER SWITCH

2 then send to PERIMETER FIREWALL traffic from campus network to

Internet↪→

3

4 when node is an OUTER SWITCH

5 then send to PERIMETER FIREWALL traffic from Internet to campus

network↪→

Figure 3.20: PoLanCO statements enforcing a firewall policy
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1 In no case shall the following types of servers (except those

2 maintained by CIT for the express purposes delineated) be

3 connected to the network: DNS, DHCP, BOOTP, or any other server

4 that manages network addresses.

Figure 3.21: Network-based Intrusion Prevention Policy of the Oberlin College and
Conservatory

The key to enforce the policy is to distinguish between authorized servers and

regular hosts use two labels. By distinguishing servers from hosts it is possible to

block DNS and DHCP traffic destined to the latter. Note that it does not suffice to

solely block all of DNS and DHCP packets to enforce the policy because legitimate

end systems would be unable to resolve names or request a private IP addresses from

authorized DNS and DHCP servers. Instead, the BRMS should produce configura-

tions that only allow responses issued by authorized servers and block messages issued

by any other device (i.e. a rogue server). The PoLanCO statements are presented in

Fig. 3.22.

1 when node is connected to a REGULAR-HOST

2 then allow-only dns-response traffic from authorized dns server

3

4 when node is connected to a REGULAR-HOST

5 then allow-only dhcp-response traffic from authorized dhcp server

Figure 3.22: PoLanCO statements prohibiting traffic from rogue servers

Fig. 3.23 shows the translation of PoLanCO statements into OpenFlow rules.

First, the BRMS selects all the network devices that are connected to a REGULAR-HOST

node (i.e. SWITCH A and SWITCH C). Then, the allow-only action of the PoLanCO

statements (lines 1 and 4) produces two OpenFlow rules per selected switch. For

clarity, Fig. 3.23 only shows the rules enforcing the policy on (rogue) DNS servers
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but the procedure is similar for DHCP servers. Specifically, a rule with priority n

drops all DNS response traffic, thereby preventing messages originating from rogue

servers from reaching end systems; and another rule (with higher priority, say, n+ 1)

that explicitly allows response traffic coming from authorized servers to reach end

systems for legitimate name resolutions.

SWITCH A

SWITCH B

AUTHORIZED 
DNS SERVER

128.163.8.8

REGULAR-HOST

REGULAR-HOST
(Rogue DNS)

match: [src_port=53]
action: drop
priority: n

match: [src_port=53, src_ip: 128.163.8.8]
action: output=Normal
priority: n + 1

SWITCH C

REGULAR-HOST
(Rogue DNS)

match: [src_port=53, src_ip: 128.163.8.8]
action: output=Normal
priority: n + 1
match: [src_port=53]
action: drop
priority: n

Campus Core

Figure 3.23: Rules installed to prevent rogue servers

3.5.5 Other Policy Statements

We provided a detailed description of some of the policy statements found at various

university websites that can be written in PoLanCO in order to document, automate,

and trace network policies. This section presents other statements that were not found

in online policy documents but are typically enforced in a campus network.

Accessing SSH Servers: Besides VPNs, certain nodes in the campus network

might be allowed to be accessed from the Internet over an encrypted SSH

channel (possibly from specific IP ranges). Access to authorized SSH servers

can be explicitly specified using PoLanCO (see Fig. 3.24)

Deep-Packet Inspection: Even though so-called “Next-generation Firewalls” typ-

ically perform DPI, they are sometimes cost prohibitive for institutions that
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1 when node is a FIREWALL

2 then allow ssh traffic to campus network ssh servers

Figure 3.24: PoLanCO statements for access to SSH servers

1 when node is a FIREWALL

2 then send to IDS web traffic from Internet to authorized web

servers↪→

Figure 3.25: PoLanCO statements enforcing IDS inspection

have tight budgets for network infrastructure. As an alternative, dedicated

software-based IDSs (e.g. Snort [30], Bro [29]) are deployed at multiple places

in the network on commodity hardware that perform the DPI at slower speeds

but with a high-accuracy of detecting intrusions.

Fig. 3.25 shows a PoLanCO statement that sends traffic aimed at web servers

to an IDS once it has successfully pass through the campus firewall.

Offline Traffic Monitoring: There are occasions that, instead of doing inline DPI

that may become performance bottlenecks, network operators do offline analysis

of the network traffic traversing various portions of the network. For example,

network traffic is analyzed for capacity planning, usage trends, or outage de-

tection. Network operators may specify PoLanCO statements to copy network

packets out to a specific port. Fig. 3.26 show an example to analyze local DNS

traffic:

1 when node is connected to an AUTHORIZED DNS SERVER

2 then mirror to port 0 dns traffic from campus network

Figure 3.26: PoLanCO statements copying DNS traffic to a switch port
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Locking-Down Access to Printers: Section 3.5.2 described an example on how to

enforce policies that prevent printers from being accessible from the Internet.

The policy also required network operators to disable any unnecessary services

that could be potentially active by default. However, the policy did not prevent

any network user from sending print jobs to any printer on campus. In reality,

campuses typically impose tight restrictions on access to network printers (and

other types of devices such as cameras, IP telephones, streaming systems, etc.).

Access to printers is normally limited to members of the department where

the printer is physically placed. For example, the PoLanCO statements shown

in Fig. 3.27 that any printer in the Computer Science network may only be

accessed by members of the Computer Science departments using desktops (i.e.

no laptop, or mobile printing), blocking everything else. In short, two PoLanCO

statements are needed: (1) drop any incoming requests from a device that is

not part of the department’s network and (2) drop “print” requests coming

from the Computer Science network but are not desktops (e.g. a laptop over

wireless).

1 when node is CS FIREWALL

2 then block traffic to cs printers

3

4 when node is connected to a CS PRINTER

5 then allow-only print-jobs from cs desktops

Figure 3.27: PoLanCO statements locking down access to printers

Interactions in Emerging HPC Environments: Historically, HPC systems

have been governed by relatively simple security policies based on a combi-

nation of authentication, VPN and firewall technologies. However, in recent

years local cloud environments (e.g. OpenStack [120]) and distributed storage

systems (e.g. Ceph [121]) have emerged to complement the traditional offer
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of large supercomputer clusters provided by HPC centers. These emerging

systems are oftentimes formed with separate components that are connected

either through a single shared network or via multiple dedicated networks that

maximize system performance and scalability to their users. The architecture

of two of those systems is briefly described. Namely, an OpenStack deployment

and a Ceph storage system. Then, the types of access policies that are needed

are discussed. Specifically, policies that define and restrict valid access within

the systems’ components, and between the systems and the network users.

Ceph: In a Ceph environment, the main distributed resources are called Object

Storage Daemons (OSDs) and Object Storage Monitors (OSMs). The for-

mer are responsible for storing objects and perform replication and recov-

ery tasks, whereas the latter manage cluster membership and state. The

resources can be interconnected in many ways, for example, they could

be connected to a general-purpose network (like the campus network), or

they could be deployed on an additional network (e.g. using VLANs to

create a “Ceph network”). Ceph resources rely on three interfaces (e.g. the

RADOS gateway, block device interface, or Ceph’s file system) that act as

proxies that translate requests into Ceph-protocol messages from network

users to store/retrieve data from/to the campus network (see Fig. 3.28a).

In either case, network operators need to establish appropriate policies to

prohibit unauthorized access from hosts on the campus network to Ceph’s

underlying resources and web interfaces. For example, the network policy

should only allow authorized CephFS clients to reach CephFS server, only

authorized hosts to reach block devices (i.e. devices that can be mounted),

or ensure that the cluster network only moves traffic across OSDs. The

policies can be implemented in the network using SDN, and therefore, can

be expressed using PoLanCO statements.
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OpenStack: Like Ceph, OpenStack can be deployed either sharing the general

purpose network or by using a private management network used to pro-

vision and control OpenStack components. In the former, any machine on

campus would be able to reach/attack any component of the system, po-

tentially including VMs deployed and managed by other users. In the latter

(see Fig. 3.28b), network separation can help by making key components

of the system only accessible via the management network. In addition,

it is also possible to create independent external “provider” networks (i.e.

paths to the Internet) that ensure the traffic from VMs is isolated to an

appropriate VLAN. While the deployment of various physical (or virtual)

networks helps with OpenStack’s network security needs via isolation, the

approach falls short when it comes to the implementation of fine-grained

network security policies required to allow/prohibit interactions (e.g. sys-

tems, communication mechanisms) between (and within) components in

the management network (e.g. user A’s VM can be accessed from the

Internet via Remote Desktop Protocol (RDP)) and network users.

Dynamic environments such as Ceph and OpenStack have the potential

to experience a wide variety of network interactions within and between

both systems. Fig. 3.29 presents some of the policies that can be written in

PoLanCO that could ease the management of such interactions and ensure

that components are accessed by specific entities.

3.6 Final Remarks

We presented a translatable policy language called PoLanCO that allows network

operators to specify network policies in terms of human-readable, but technically

precise, statements when compared to the long acceptable use policies available online

on several university websites. The statements are written in an easy-to-read syntax

84



www.manaraa.com

Monitor OSD0 OSDn

10 Gbps+ Cluster Network
(Private)
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Block Device
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Figure 3.28: Ceph and OpenStack architectures

1 when node is an OSD

2 then allow-only traffic from RADOS Servers

3

4 when node is an OSM

5 then allow-only traffic from RADOS Servers

6

7 when node is an OpenStack VM

8 then allow-only vnc traffic from campus addresses

9

10 when node is a firewall

11 then allow ssh traffic to openstack-network

Figure 3.29: PoLanCO statements expressing access policies in OpenStack and Ceph
systems

that leverages advancements in technologies such as BRMS and SDN. PoLanCO

uses a network information gathering phase to appropriately label network nodes

and utilizes the information as facts (i.e. source of truth) to enforce various types of

network policies. We showed several real-world example university policies, describing

how they can be written with simple PoLanCO statements, and how the statements

are translated into OpenFlow rules to ensure policy enforcement.

85



www.manaraa.com

Chapter 4. Network Security Caps: Separating Policy and Device

Configuration

4.1 Introduction

The traditional way of enforcing network security policies in current networks is

largely done by means of device configurations. Because network policies are often

needed to protect network servers from attack or to protect communication to/from

a network server (e.g., prohibiting cleartext protocols like HTTP to web servers or

FTP to file servers), network policies often end up being enforced by servers via their

configuration files, rather than by the network.

This approach towards network security enforcement should not come as a

surprise given that most servers already have a configuration file. While the config-

uration file is primarily there to define or specify the functionality the server should

offer, it is relatively easy to add a few statements to the configuration file that also

specify security policies. Besides, who better to protect a server than the server itself.

Enforcing network policies via configuration files conflates network security

enforcement with server functionality configuration, and it comes with some draw-

backs.

Independent Server Configuration: Every server must be configured (and se-

cured) independently. Therefore, securing the network via configurations re-

quires more work (i.e. it is challenging to scale and maintain independent

servers) and increases the chances for a server to be secured incorrectly (on

accident). On the other hand, doing security enforcement in the network only

requires securing the network (forwarding devices) and applies the same policy

to all servers.
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Users as Server Administrators: With personal equipment and user-managed

VMs deployment being commonplace in today’s campus networks, network

users cannot be trusted to enforce security policies on end systems (including

servers). For example, students in charge of configuring their laptops may not

be concerned about security when joining the network, students may also prefer

to use default configuration files to have services available out-of-the-box, or

students may not want to maintain their systems regularly. Having network

administrators be responsible of network security centralizes trust where it

should be – with a trained professional who cares.

Functionality and Policy: Because the configuration file is used to specify both

functionality and security, it is easy to enable (or disable) features that create

security vulnerabilities. For example, during the initial setup of a server, the

owner could forget to disable a feature that violates the network policy (e.g. re-

moving the HTTP port from the listening ports in web server configuration file

shown in Fig. 4.1). Whereas, network administrators think about security inde-

pendently of the current functionality that has been enabled (or disabled). In

other words, network administrators plan for all attacks, regardless of whether

the server functionality is susceptible to them or not.

Mitigating Attacks at the Server: If network security is enforced only at the

server, then attacks can only be stopped or blocked when packets reach the

server. This enables DoS or DDoS attacks that not only affect the performance

of the server, but may also affect the performance of other services on the net-

work. By securing the network, attacks can often be blocked far before reaching

the server itself.

Emerging network architectures such as SDN have enabled new opportunities

for the development of applications that could aid and ease network security man-
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httpd.conf (Apache)

1 Listen 80

2 ServerName localhost:80

3 ServerRoot /var/www/example.com

4

5 <Directory />

6 Options FollowSymLinks

7 AllowOverride None

8 Order allow,deny

9 allow from all

10 </Directory>

11

Figure 4.1: Example configuration file of an Apache web server

agement (Section 2.3.4). As an example of potential uses of SDN technology to assist

with security, we introduce and describe the concept of Network Security Caps . The

main idea behind Network Security Caps is to use OpenFlow-enabled devices at mul-

tiple places in the campus network to separate the enforcement of security policies

from configuration files. Specifically, the separation is done by adding the ability to

intercept traffic going to or coming from end systems and apply policy to the net-

work packets of those traffic flows before they arrive at the servers that need to be

protected. Under this approach, we add a security layer to the network that protects

servers from violating security policies regardless of server misconfigurations. Rather

than replacing the way network policies are enforced today, we propose the security

layer as an additional control to minimize potential vulnerabilities in the network and

can be automated by using DSLs such as PoLanCO (described in Chapter 3).

4.2 Network Security Cap

Traditional networks rely heavily on configuration files and CLI commands to set

up network services and devices (switches/routers) in terms of the functionality they

provide and the way they should enforce high-level network polices defined by the or-
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ganization. However, conflating functionality and policy enforcement poses a security

risk for the network.

Take for example the network device shown in Fig. 4.2. The network device

has multiple interfaces that are used to communicate with other devices and end

systems in the network. Once a network device has been successfully installed in

the network, it needs to be appropriately configured before any interface is actu-

ally enabled to forward packets. Network operators configure network devices via

CLI instructions specifying operational data such as the device’s name, availability

of SNMP Management Information Bases (MIBs), the network domain the device

belongs to, initial entries in the routing table (if providing L31 capabilities), adminis-

trative credentials for future management and maintenance task, logging directives,

VLAN association per port, to name a few. After the operator configures a device,

whenever traffic arrives at an interface, the device’s internal configuration (referred to

as normal pipeline) modifies and forwards network packets based on the current state

of the device’s internal data structures. The contents of the internal data structures

change over time depending on the type of device, the protocols that were enabled

per interface, and network information received from neighboring devices.

Device
Configuration

hostname SNMP-mibs DNS

routes OSPF ACLs Logs

VLAN LLDP admin-
access

Figure 4.2: A generic network device

Moreover, any modification to the high-level network policy requires the net-

work operator to change the internal configuration of the device (e.g. updating

VLANs or default routes for certain destinations). Additionally, for policies that
1L3: Refers to the network layer of the OSI model [122]
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are solely implemented with configuration files or host-based utilities, there is no

mechanism in place to enforce the new policy on the network while the end system

is appropriately tuned and its configuration files updated to comply with the new

policy directives.

In order to aid with the timely enforcement of policies in the network, even

if they depend on the configuration of end-systems, we introduce the concept of a

Network Security Cap (NSC) enforcement layer. A NSC (Fig. 4.3) is an intermediate

security policy enforcement layer located inside network devices (switches/routers)

between the device interfaces—in charge of receiving and transmitting network

traffic—and the device internal configuration—used by the device’s data plane to

process packets and make decisions based on information inside the packet headers

and internal data structures. The NSC layer intercepts all packets arriving at a

device prior to any packet reaching the normal pipeline. Then, policy enforcement

rules evaluate packets and determine whether a packet should be (1) dropped if

it is not policy compliant (e.g. when traffic that uses protocols that transmit

information in clear text), (2) forwarded out (and possibly modified) off an specific

device interface (e.g. when traffic is part of an authorized exception), or (3) sent to

the normal pipeline if the packet does not violate the policy (e.g. when hosts are

resolving addresses via ARP messages).

A NSC is initially empty, thereby relying entirely on the policies enforced at

the end systems and the network devices as it happens today. As a result, NSC

can be incrementally deployed as enforcement points that initially do not interfere

with ongoing operations in the network. Nevertheless, a switch’s NSC also allows

the dynamic addition of enforcement rules. Rules can be of any type (e.g. Open-

Flow, Policy-Based Routing (PBR) [123]) as long as they precede the device’s normal

pipeline processing. As time goes by and policy changes, multiple security policies

can be enforced across portions of the network that have devices with NSCs.
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Network Security Cap

Device Configuration
hostname SNMP-mibs DNS

routes OSPF ACLs Logs

VLAN LLDP admin-
access

Policy Enforcement
Rules

Figure 4.3: The Network Security Cap

Network policy definition tools can leverage NSC-capable nodes to deploy

network-wide policies. For example, an operator writing network policies in a DSL

such as PoLanCO (described in Chapter 3) can generate various types of network

configurations and push them to NSC-capable devices for enforcement purposes. In

that way, any arriving packet at a device will be first evaluated against the policy

before it can be handled by the regular processing of the network device (if at all).

4.3 Deploying Enforcement Points in the Network

Network Security Caps can follow an incremental deployment approach that does not

disrupt ongoing communications. A Network Security Cap treats security enforce-

ment as an added service (as opposed to a security replacement) to the infrastructure.

As mentioned earlier, every deployed SDN device could be seen as a policy enforce-

ment point that protects a portion of the network from potential exploits arising from

system misconfigurations.

In order to achieve a seamless transition towards an NSC-enabled infrastruc-

ture, OpenFlow powered switches were utilized to realize the NSC enforcement layer.

Specifically, the OpenFlow pipeline is used as the NSC layer where decisions about
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policy compliance are made on a per-flow basis using OpenFlow actions (e.g. drop-

ping, modifying, forwarding, mirroring, rate-limiting) before the internal device con-

figuration does any further processing.

Unfortunately, the OpenFlow specification [64] has many features marked as

optional. Vendors may choose what parts of the protocol to implement in their

hardware, and consequently, make it harder to deploy SDN-enabled equipment in

networks due to the lack of standardization across many OpenFlow implementations.

Nevertheless, in general, there are two types of OpenFlow switches, namely,

OpenFlow-only and OpenFlow-hybrid. The former, which is typically used in proto-

types and systems reviewed in parts of Section 2.3, are considered “dumb devices”

that do not make any local decisions beyond those based on the rules present in the

flow tables. The latter are devices that support both OpenFlow operation and tra-

ditional forwarding that involves and relies on traditional protocols to perform L2 2

Ethernet switching and L3 routing. Naturally, OpenFlow-hybrid devices help realize

Network Security Caps in a campus network. They ensure that existing communi-

cations are not disrupted and an incremental approach is feasible. The deployment

OpenFlow-hybrid devices builds a campus-wide NSC enforcement layer that is viewed

as a an added security service to the network’s standard forwarding capabilities. In

addition to the operation in hybrid mode, the OpenFlow implementation embedded

in the switches must support the reserved port NORMAL that, unfortunately, is marked

as optional in the OpenFlow specification. The NORMAL port allows a switch to pro-

cess all packets received in any interface to go through the OpenFlow pipeline before

the normal pipeline (and internal configurations) takes over.

Given an OpenFlow-hybrid device that supports the NORMAL port, a new mode

of packet processing that differs from the reactive and proactive modes (see Sec-

tion 2.3.3) can be introduced in our SDN-enabled network . Unlike the reactive and

2L2: Refers to the data link layer of the OSI model [122]
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proactive packet processing approaches, which are oriented towards networks with

OpenFlow-only devices and where the default policy is to either send packets to the

controller or simply drop them, the default policy using NSCs is to send all policy-

compliant traffic to the NORMAL pipeline, thereby way guaranteeing no disruption of

communications. Fig. 4.4 shows how packets are processed when they reach a newly

deployed NSC at the access layer of the topology. The OpenFlow rule that matches

on all types of packets and forwards them to the NORMAL port (i.e. to the normal

pipeline) represent the default policy. Consider an HTTP request that is sent from

another system to the server on the left-hand side of the figure (green arrows). First,

the NSC process the packet matching it against the default policy since no other

policies are installed in the switch. Then, the packet is sent to the normal pipeline.

The device configuration determines the output interface for the packet based on the

device’s internal data structures (e.g. MAC table, routing table). Lastly, the packet

is delivered to the the web server process running on the server.

Note that a NSC does not affect packets that are used for route and topology

discovery using traditional distributed protocols (blue arrows). The only difference

in this case is that the packet processing ends at the normal pipeline with updates to

the device configuration.

Server
(10.10.0.8)

Apache (:80)

SSH Server (:22)

Neo4j DB (:7474)

Network Security Cap

Normal Processing

priority: 0 match: * action: output=NORMAL
HTTP Packet

OSPF Packet

Figure 4.4: Normal processing of packets at the access layer

Although NSC-compliant devices can be deployed at any place in the network,

we argue that the access layer is an ideal place for policy enforcement due to its
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proximity to the end systems (i.e. servers and clients).

4.4 Example Policy Enforcement

All of the examples that were presented in Section 3.5 leverage the NSC concept

described in this chapter as a way to translate human-readable policies into pol-

icy enforcement rules. The examples were mostly focused on the expressiveness of

PoLanCO and therefore addressed an individual policy (possibly spread out onto

multiple devices) at a time. For the sake of completeness, the example in this section

addresses an scenario where multiple policies can coexist in an individual NSC and

can help mitigating the risks of rather frequent server misconfigurations.

Continuing with the interactions described in the previous section, Fig. 4.6

shows a NSC that receives various types of traffic and enforces multiple high-level

policies that were specified using the PoLanCO statements shown in Fig. 4.5.

1 policy "disable telnet"

2 Block telnet traffic

3

4 policy "disable clear text web server access"

5 when node is connected to a WEB-SERVER

6 then block http traffic

7

8 policy "secure web server access"

9 when node is connected to a WEB-SERVER

10 then allow-only https traffic

11

12 policy "1 hour backup exception"

13 policy priority 10000

14 when node is connected to a SERVER A

15 then send to BACKUP-PATH traffic from server-a to aws for 60

minutes↪→

Figure 4.5: Example PoLanCO statements enforced by a Network Security Cap
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Figure 4.6: A Network Security Cap enforcing high-level policies

On the left hand side, the box representing Server A shows the applications

(services) that are currently running on the server.

The Server A’s primary purpose is to host a website. The system administrator

installed the Apache server on the system and changed its configuration file to add

HTTP over TLS (HTTPS) support because (1) HTTPS is disabled by default in the

software version she downloaded and (2) she is aware that web services should be

reached via secure protocols. However, the administrator forgot to disable HTTP

support in the configuration file. Therefore, there is a security risk for connections

trying to contact the server reaching on that port (many). Additionally, Server A

has a telnet daemon that (unknowingly) was turned on by the OS during its initial

setup. Lastly, the server is also running a database server that uses port 7474 to

provide a Graphical User Interface (GUI) (Fig. 3.10 and Fig. 5.5 are examples of

such interface) for running queries and executing database transactions. Access to

this GUI should be local (i.e. restricted to the localhost address 127.0.0.1), but, by

default, it is turned on and available for access from other addresses in the network

(i.e. the database service is misconfigured).

Let us consider the following network security policies that the server should
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have implemented but because of misconfiguration is currently violating. First, pro-

tocols that transmit information in clear text such as telnet should be disabled (lines

1-2 in Fig. 4.5). At present, state-of-the-art OSs disable telnet by default. However,

nothing prevents a system administrator to misconfigure the server (or use an old

OS launches a telnet daemon by default) and accidentally enable the service. The

PoLanCO statement enforces the policy generating the (green) NSC rule that prevents

telnet requests to succeed even if the server has the service turned on. Secondly,

consider a policy stating that all web servers on campus should only be accessed over a

secure HTTPS connection (i.e. port 443). Since the system administrator’s intention

was to enforce the policy via configuration, she should have disabled the HTTP fea-

ture (i.e. port 80) during server setup. However, if network operators use PoLanCO

and NSC to implement the policy (regardless of the the system administrator), NSC

rules that either drop HTTP (lines 4-6) or allow only HTTPS packets (lines 8-10) can

be installed in all network devices that have a web server connected (the yellow and

blue rules in Fig. 4.6 implement the latter). Now, since in this example the system

administrator forgot to disable port 80 in the configuration file, the network protects

Server A because the NSC separated policy implementation/enforcement from server

configuration.

Unfortunately, OpenFlow does not support negations to the traffic match por-

tion of a rule (e.g. matching on all traffic that is not port 80). However, installing

two (or more) rules in the NSC circumvents the limitation. Specifically, a rule with

priority P that drops all traffic to a particular node (e.g. using its IP address) and

multiple finer-grained rules with priority P + 1 that include the services and sources

that can access the node. In Fig. 4.6, the yellow rule forbids any request to reach

server A whereas the fine-grained blue rule enforces the policy defined in lines 8-10

by sending to the normal processing pipeline traffic that is targeted at the server

on the HTTPS port. Note that such rules implicitly protect the server from other
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misconfigurations. For example, attempts to access the GUI of the neo4j database

(port 7474)—that was mistakenly configured for public access—are denied. Last but

not least, let us consider a short-lived policy (lines 12-15)3 that allows servers to by-

pass the scrutiny of middleboxes during one hour in order to achieve high throughput

using a dedicated path for data backups to cloud storage services (e.g. AWS S3).

In this case, the exception could be deployed with a temporary high-priority

rule (10000).

The rule may perform transformations to traffic packets that are more complex

than what regular devices do before packets are sent out of an alternative interface

(e.g. the red rule rewrites VLAN number to 5 and forwards traffic out of interface 2 for

the matching packets). Note that unlike the HTTPS flow, the policy writers wanted

to avoid using the normal path for some reason – say because under the default policy

(i.e. priority 0) would have forwarded traffic out an interface that further in the path

contain a series of performance limiting middleboxes. This example shows that both

policies and temporary exceptions can be deployed in the campus using NSCs and

serves as a preamble of the exception system described in Chapter 5.

3duration is not part of the PoLanCO syntax presented in Chapter 3 but can be easily added
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Chapter 5. Enabling Short-Lived On-Demand Security Exceptions

Network security policies have been traditionally enforced by specialized network

appliances. Enforcement devices, often referred to as middleboxes [1], analyze and

process packets that traverse the network in a variety of ways to protect network users

and end systems from malicious actors. For example, it is not uncommon to find

devices such as firewalls, IDSs/IPSs, load balancers, or Network Address Translation

(NAT) boxes at various locations to enforce policies that mitigate attacks, and prevent

a variety of exploits. While middleboxes help network operators deploy policies, they

have two main drawbacks. First, middleboxes tend not to run at line rate due to

their complex packet processing pipeline, and second, they apply the same degree

of scrutiny to all packets in the network even though not all flows require the same

level of scrutiny as other. While there are high-end commercial solutions that solve

the former, oftentimes commercial appliances are cost-prohibitive for organizations

that have budget constraints. As a result, middleboxes often become bottlenecks that

cause network users to experience severe performance degradation and/or unexpected

behaviors to their flows.

Moreover, even if middleboxes were affordable and capable of handling line-

rates, their heightened scrutiny of user traffic has led to an adversarial relationship

between users and network providers. To ensure security, providers try to found out

what users are doing by performing Deep Packet Inspection (DPI. On the other

hand, users do not appreciate this meddlesome inspection and other downsides such

as going through a lengthy approval process to access a site/server, being subjects of

invasive monitoring, or experiencing poor performance.

We argue that this escalating arms race between users and providers is detri-

mental for both parties. Instead, we introduce an approach towards network security
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enforcement based on the concept of short-lived on-demand security exceptions. We

bring network providers and trusted users together by (1) implementing coarse-

grained security policies in the traditional way using conventional in-band security

approaches (i.e. via affordable middleboxes) and (2) handling fine-grained policy ex-

ceptions outside of the data plane using context information provided by the users

(or their applications) when a network flow is initiated or during the connection

establishment between both ends in the communication.

Under an exceptions approach both parties benefit. On one hand, trusted

network users divulge context information to network providers to receive special

treatment for their flows. On the other, by allowing security exceptions, network

providers not only reduce the load on traditional policy enforcement middleboxes,

but focus inspections on general (untrusted) traffic. This chapter describes the re-

quirements and design of a system that can allocate security exceptions on demand

and in real-time, as opposed to the manual, close-to-static, committee-driven process

to allow exceptions on campus networks. We highlight the relevant data structures

and technologies needed to establish trust relationships between providers and net-

work users, as well as the mechanisms and systems needed to deploy exceptions onto

the network infrastructure. Lastly, we report performance improvements we obtained

using a prototype exception system tailored to the transmission of big datasets to var-

ious storage systems and research facilities.

5.1 Middleboxes

The traditional way to enforce network security policies in a network requires the

physical deployment and individual configuration of dedicated appliances (also called

middleboxes). These network security devices have become highly sophisticated over

the years and are now pervasive across many types of networks including campus,

enterprise, cloud-based, and provider networks. Middleboxes provide several services
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and process network traffic in a variety of ways to ensure users and their applications

are protected. Typically, network appliances, which are deployed at key places of

the network infrastructure (e.g. at the network edge where campuses connect to

their regional ISP, in front of a server pool, as point of entrance to critical resources

like databases or file servers), intercept and perform some form of DPI on all traffic

moving through the network. Specifically, once packets are intercepted, a middlebox

analyzes the content of each packet (including not only headers but possibly the

payload) to find matching packets based on predefined network patterns or well-known

signatures, and then apply middlebox-specific processing to the matched packets. For

example, firewalls, that are deployed inline on the physical network path, drop or

forward packets matching certain (header) fields (e.g. IP addresses, port numbers,

protocol flags, payload structure); IDSs/IPSs perform DPI looking at payloads to

identify suspicious traffic and log, alert or block the activity based on packet frequency

or packet payload; NAT boxes serve as an interface between the Internet and a

private LAN where all hosts in the LAN have local/hidden IP addresses that must

be translated into one or more public addresses when talking to Internet endpoints;

load balancers distribute traffic across multiple servers ensuring that no single server

is severely overloaded, thus, contributing to the mitigation of DoS attacks and aiding

high availability.

Middleboxes are an integral part of network infrastructures because they not

only they keep the network secure, but they often provide additional services to

network traffic (e.g. content caching, QoS, rate-limiting). Although they have become

the de facto mechanism to enforce policies the complex processing these devices have

to go through—involving DPI—oftentimes causes them to be incapable of performing

at line rates.

In recent years new commercial solutions (e.g. Palo Alto [25], SonicWall [26],

FortiGate [27]) have emerged that can achieve (close to) wire speeds and offer traffic
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monitoring and policy management. These boxes are often cost prohibitive for or-

ganizations with tight budgets (e.g. schools, community colleges, startups and small

organizations). Consequently, the only options left is to acquire inexpensive middle-

to lower-tier devices or even deploy software-based solutions on commodity hardware

(e.g. Bro [29] or Snort [30] IDSs running on a Linux box). While these affordable so-

lutions are easy to deploy, they often become choke points in the infrastructure where

user flows can encounter a performance hit or unexpected behavior due to variable

packet throughput rates from the slow DPI.

In addition to this problem, note that even if these middleboxes were both

affordable and capable of handling line-rates, the fact that they have historically been

the preferred mechanism to enforce policies has led to an ongoing escalating arms race

between network users and providers. For example, providers deploy middleboxes to

block traffic destined to certain ports or addresses. In response, users tunnel traffic

over open ports (e.g., port 80) to get around these limitations. Providers, in turn,

deploy DPI to better identify the traffic traversing the network. Users then employ

encryption to thwart the providers’ DPI efforts, further intensifying the arms race.

Providers then rate limit traffic that exceeds a certain rate, threshold, or otherwise

looks suspicious, thereby continuing the escalation.

The deteriorated relationship between user and provider is harmful for both

parties. Providers have to inspect all traffic; both acceptable (legitimate) and offen-

sive traffic. Users feel their privacy is under constant invasion and their flows are

significantly degraded. To de-escalate the arms race we argue that both providers

and users should move away from an adversarial modus operandi where complex tech-

niques are continuously developed to obstruct each other’s needs, thereby making

network management harder, and legitimate network workflows unnatural. Instead,

users and providers should cooperatively participate in the compliance of security

policies.
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Specifically, if users share information about what they are doing, in return,

providers will allow user flow(s) to avoid the normal policy compliance checks. We

define these mutually agreed on safe flows policy exceptions.

Mapping higher-level policies perfectly onto network-level abstractions is a

hard task where at times middleboxes may not be able to precisely implement a

high-level policy (e.g. a policy for flows working on an NSF grant) thus, resulting in

collateral damage; middleboxes end up either over-protecting—blocking traffic that

does not need to be blocked, thereby limiting functionality—or under-protecting—

passing traffic that should have been blocked, thereby increasing risk.

A classical under-protection example is the deployment of a specialized DMZ

for research traffic—called a Science DMZ [124])—at the edge of the campus network

(i.e. the box hanging off of the campus edge router in Fig. 5.1). Unlike traditional

DMZs that are generally placed in between two firewalls (as shown in Fig. 2.2 and

Fig. 2.4) and whose purpose is to separate public access to corporate resources such

as web, DNS, e-mail servers from access to the LAN, the primary purpose of the

Science DMZ is to eliminate any bottleneck that involves DPI from the network

path in exchange of significant gains in network throughput. As a result, machines

that join the Science DMZ have to deal on their own (e.g. via software solutions)

against potential attacks from external (untrusted) entities as the protection offered

by firewalls and IPS/IDS is forfeited and there is a direct exposure to the Internet.

Additionally, campus network acceptable use policies are not enforced for devices in

the Science DMZ; thus, nothing prevents a user from abusing the granted privilege

and reaching unauthorized sites that otherwise would have been blacklisted by a

campus firewall.

Ensuring an appropriate degree of network security is always a trade-off among

various costs and benefits such as CapEx/OpEx, user (in)convenience, and perfor-

mance. We showed above that , at present, it is hard for a user to share information
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Figure 5.1: Security implications of a Science DMZ

about the context of her workflows in exchange for special treatment against network

policies, first, by following an extensive and manual procedure that requires signa-

tures, justifications, forms, committee approvals, that for the most part is static;

and second, by registering a machine as part of a Science DMZ to achieve high-

performance throughput at the risk of being exposed and unprotected by otherwise

helpful middleboxes.

We re-examine the trade-offs involved in the current coarse-grained,

middlebox-based approach to enforce network security taking into account that

emerging technologies that enable programmability in existing campus networks can

cope with research environments that are complex and rather dynamic that expect

the network to adapt to their needs. Specifically, we propose a new approach towards

network security based on the concept of short-lived on-demand security exceptions

that leverages the network packet processing we described in Chapter 4 and uses

the control plane to remove the context unawareness of the middlebox-based policy
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enforcement approach for exceptional flows.

The fundamental concept of our proposal is to use traditional (and affordable)

security appliances (that have been optimized and hardened) to provide a base level of

coarse-grained policy enforcement on untrusted traffic, noting that the performance

costs increase with increasing policy complexity as well as traffic volume. To address

the issue of invasive scrutiny for legitimate traffic, we support the ability to establish

trust relationships between users and network providers using an authorization tree to

hierarchically divide segments of the network flow space into trusted regions. These

trust relationships can then be used to create fine-grained, short-term, trusted, on-

demand exceptions to the base policies. The exceptions are implemented using well-

defined protocols in SDN such as OpenFlow while keeping the cost of the base-level

down.

In addition, some enforcement decisions (i.e., whether to grant an exception)

are abstracted out of the data plane (i.e. the middleboxes) and moved to the control

plane (flexible and driven by software and automated mechanisms), where they can

be based on authenticated information provided by users indicating conformance (or

not) to higher-level policy. In other words, if trusted users are willing to inform

network providers about the type of traffic they will be using, their traffic may be

eligible to bypass the middlebox compliance checks—and associated costs—applied to

the traffic of other (less-trusted) users. More precisely, negotiated security exceptions

can allow users to bypass certain middleboxes, allow otherwise prohibited traffic to

temporarily traverse the network, or offer some level of QoS to authorized flows.

Exceptions might also be made to stop normally-allowed traffic as well, for example

to block or rate-limit unwanted traffic that would otherwise be delivered to a user

based on network conditions such as time of the day, or changes in role/affiliation.
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5.2 Exceptions as First-Class Entities

Most network policies are written in Acceptable Use Policy (AUP) documents describ-

ing allowable and expected user behavior, guidelines to protect IT resources in the

campus network, and the mechanisms used to reduce risk and mitigate attacks, among

others. While in the past such policies sufficed, current workflows are becoming more

dynamic and dependent on the services provided by the network, even for disciplines

that historically have not needed a significant amount of IT resources. Moreover,

there are occasions where compliance to such policies cannot be fully achieved or

by actually abiding by them could result in a major limitation (or disruption) of

legitimate workflows that are well-aligned with organization’s objectives and goals.

Research environments, in particular, have to cope with emerging workflows

due to recent technology trends in research (e.g. Big data, machine learning, cloud

computing, and IoT). Unfortunately, network security policies were designed for

general purpose traffic and have not been appropriately adapted to cope with newer

technological paradigms. Most institutions do not have the ability to create network

policy exceptions – i.e., grant a flow, or all flows from a machine, the ability to bypass

the normal network policy compliance checks.

Several institutions now support the concept of a Science DMZ that allows

researchers to move their machine outside the university firewalls into a Science DMZ

that is not subject to the university’s policy compliance checks – or the performance

overheads of applying those checks.

In a few rare cases, the university will allow researchers to request a network

policy exception for a certain well-defined flow. The network administrators must

review the request, and, if granted, manually configure the network to ensure the

requested flow does not go through the normal compliance checks. Although there

are slight variations in the actual steps among all institutions, the following procedure

shows the steps that need to take place before an exception is granted (modified or
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removed) on campus.

1. Request form from IT department. While some of these forms are publicly

available, some others can only be accessed through a shared folder or via e-

mail.

2. Fill out exception form and obtain signatures from department chair(s). The

form may include information such as the policy for which an exception is

requested, list of systems, networks, and/or data affected by the request, fully

qualified name of servers, detailed justification of requests, any attack mitigation

controls.

3. Submit form to IT department. This step can be typically completed via an

online form, an e-mail, and/or a hard-copy of the form directed to the office of

the CIO (or CTO)

4. Once the form is received, IT staff gather background information—not always

the user has knowledge of the low-level details of the network–and determine

if the case needs to be escalated or an approval/denial recommendation can be

made.

5. Contact requester if the information provided is not enough to provide a full

assessment of the request.

6. The process is halted until more information provided ultimately by re-

submitting an updated request that would require some (or all) of the tasks

required in step 2.

7. Final decision is made based on the information provided and feedback collected

after every stage. Should a request be denied, departments may appeal the

denial by submitting more information (justifying their case). Departments

may request extra meetings with IT to make a stronger case.
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8. Set a specific duration for the exception (3 months, 6 months, 1 year). It is

hardly possible to enable exceptions for short periods of time (minutes, hours,

days). The whole process is severely involved and could last longer than the

actual duration of the exception.

9. Review requests at time of renewal, ask users if exception need to be reaffirmed

or not.

10. If a significant change took place in the network or there was a change in policy,

all deployed exceptions need to be reanalyzed for newer approval.

It is evident that all these steps can be completed at best in the order of weeks,

and, as we pointed out, involve extensive manual checking, meetings, even paperwork.

In the end, the goal of exceptions is to arrive collaboratively at a win/win situation

where requests are handled in a fair, appropriate, and timely manner, where both

parties get something from working together.

While there are several drawbacks in the process: exceptions are the only

way network users can provide context and express their needs to justify partial

compliance to the security policies in place, and unlike the traditionally adversarial

approach for behavior in the network, exceptions provide a space to develop and

foster a cooperative and mutually respectful relationship between them.

The large number of steps to deploy an exception, and even the complexity

to maintain them, is what makes exceptions second class entities. In our proposed

approach, we treat exceptions as first-class entities. Our proposed security approach

splits the enforcement of network security policies into two pieces. First, network ad-

ministrators define general base network security policies to address common security

issues and concerns, and deploy them to middleboxes much as they do today. These

policies can be simple and even imprecise (e.g., over-protecting traffic and erring on

the restrictive side by blocking a wide range of ports) or slow (e.g., employing ex-
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tensive DPI). They can be deployed over long timescales as they are not intended

to change frequently and are meant to handle general-purpose traffic. Moreover,

since the types of policies expected at this level are coarse-grained, deployed us-

ing straightforward ACLs and lightweight filtering, or even software-based solutions,

their deployment is inexpensive (i.e. existing network infrastructure or commodity

hardware may be used) and scales well (performance cost is not critical).

The second part of our approach relies on making exceptions “first-class en-

tities” that override the base-level policies defined above. Unlike current practices

to treat special-cases in the network involving long timescales and several human

interactions, our exceptions are designed to be short-lived and can be requested on-

demand, thereby allowing the network to quickly adapt policy to meet the current

needs of trusted applications, or to address the current security needs of the network.

Providers (e.g., network operators, ISPs) grant policy exceptions to users—or their

applications—that supply (trustworthy) information about themselves and the net-

work traffic they will be generating. These dynamically created, flow-specific, limited

lifetime exceptions can be implemented using well-defined SDN protocols used in pro-

grammable networks such as OpenFlow [125], NETCONF/Yang [57], or ovsdb [56].

5.2.1 Example Exceptions

As noted earlier, exceptions enable both network users and providers to come to-

gether to “negotiate”. Users present their needs and justification for an exception

and providers vet those requests allowing them if partial compliance to the general

policy is outweighed by the consequences of enabling the exception. We present some

motivating example exceptions below where exceptions could simplify and enhance

operations in a campus network:

External SSH Access: Consider a policy exception that is dynamically created to

allow an authenticated collaborating researcher to use ssh from a specific end
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system in the Internet (e.g. a national laboratory), to punch through a campus

firewall and access a private git server containing shared data, without the

need to set up a VPN. The user might present the network exception system

with information about the authorized remote system, the National Science

Foundation (NSF) project associated with both the external collaborator and

the local researcher, the times of day the collaborator is allowed to access the

git server, etc.

Low-Latency Paths: As another example, consider a policy exception that allows

a highly interactive distributed application (e.g., a web conferencing application

or an interactive game) to utilize low-latency network paths (as opposed to the

default paths) among all participants in order to reduce delay, thereby improv-

ing the responsiveness of the application. The network should use information

presented by the user (similar to the example above) to provision the appro-

priate network links and paths that would ensure that constraints required by

such applications are satisfied.

Big Data Transfers: Consider an application that needs to move a large data set

between a national supercomputer facility and the local campus HPC super-

computer. In this case, the user might provide context about the transmissions

such as its frequency and duration (e.g. every weekday for two hours), type and

size of data, source and destination end points, or project-related information

(e.g. NSF grant, department project number, Principal Investigator(s)). Based

on this information, the provider might decide to allow a security exception

in which such application flows are (temporarily) routed around the network’s

IDS/IPS system to avoid its throughput-limiting DPI, thus enabling the flow

to operate at much higher transfer rates.

All three examples above illustrate cases where general network security policy
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imposes unnecessary costs on legitimate workflows. Under the traditional approach

towards network security, applications and workflows experience scenarios of constant

bandwidth rate-limiting, sluggish behavior due to network device overload (causing

high latency), or forbidden access to resources that should be shared. On the other

hand, on-demand exceptions allow users to disclose beforehand the details of their

traffic in order to justify their need for special treatment to the network provider.

Given this information, providers no longer need to subject these flows to the general

policy enforcement mechanisms and rather, as means of verification, can perform

offline passive monitoring for these flows (i.e. not affecting their performance) to

ensure granted exceptions are not used in unauthorized ways.

5.3 Exception System Design Requirements

We described in Section 5.2 the procedure that must be followed to request a policy

exception on existing campuses that support (static) policy exceptions. The proce-

dure is extensively manual. We consider this lack of automation a major setback to

effectively coping with the security needs that arise from the dynamics of research

environments. We also observed that emerging SDN network architectures, where the

control plane is separated from the data plane to enable network programmability,

present an opportunity to develop a policy system that can reconfigure the network

on-demand treating exceptions as their primary entities, and significantly reducing

the amount of work that humans have to go through during the request/approval

process.

There are several design considerations that must be taken into account in

order to implement such an exception system. We list them below:

Who can request exceptions? Naturally, defining what types of users can request

exceptions is of the utmost importance. Letting untrusted users deploy excep-

tions in the network could lead to security vulnerabilities inside the network.
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For example, we found that at times [126, 127], (static) exception requests are

accepted via e-mail using publicly available forms. While filters can be defined

to block non-institutional addresses, as we noted in Chapter 1, assuming that

any internal user is trusted is not a good policy. Instead, a better approach is to

authenticate users using their institutional credentials and against the role(s)

they are associated with. In that way, it is possible to narrow down the groups

of users that might request an exception (e.g. only faculty members and grad-

uate students may request exceptions) and mitigate unintended usage of the

exception system by both external and internal users.

Who grants the exceptions? Likewise, as we showed in Section 5.2.1, exceptions

must be vetted by the real-world authorities responsible for the network (e.g.

IT staff). In that way, the policy enforcement process is moved away from the

middleboxes, where every packet is (possibly deeply) inspected, to the control

plane, where network applications can make decisions based on high-level infor-

mation about the request. This is particularly beneficial for the performance of

the system because unlike middlebox-based enforcement, where decisions must

occur at (or near) line rate, control-plane decisions may take place on slower

timescales before exception flows are initiated. However, in order to avoid the

bottleneck of potential deliberations between organization units, trust decisions

should not be made by a single entity (e.g. campus IT), but rather should be

distributed in a controlled way among users to be able to scale the trust man-

agement system (see authorization tree below).

What is the scope of traffic that is subject to exceptions? Exceptions

should be granted to individual flows. Should a workflow involve the use of

an application that requires multiple connections (e.g. bwctl, rclone), multiple

exceptions, one per connection, must be instantiated. Exceptions should be
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associated with only the number of connections that are necessary for the

legitimate execution of a workflow. Unlike the Science DMZ approach, where

privilege (exception) is given to all the traffic to/from a set of machines (i.e.

exception is given out on a per host basis to a set of machines), an on-demand

exception system should lock down the privilege of by-passing compliance

checks to only a small number of flows; all other flows should still be subject

to DPI done by middleboxes. Note that deploying exceptions for fine grained

flows is challenging because some header fields are variable and cannot be

known in advance (e.g. source port, destination IP address resolved by a DNS

server). In such scenarios, the trust should be refined to precisely match the

flow as soon as the flow appears (see Section 5.5.2 for ways to achieve late

binding of flows to exceptions).

How to specify exceptions? Specifying exceptions is where the needs and require-

ments of network users can be described. The system should provide an interface

for trusted users to input information about their required flows. In order to

foster the automation of the system, exceptions should be structured using a

predefined syntax or markup. In this way, control software can be developed

to parse the contents of each exception and automatically transform the ex-

ception into network configurations. While there is no exception specification

standard, at a minimum, the defined markup should be equivalent for all units

in the campus network.

What information should be included in an exception? The mechanism

used to request exceptions must include information related to the context in

which the exceptions will be deployed. The exception request should include

information such as application IDs, grant/project numbers, laboratory/group

names, type of traffic being sent, etc. Unlike unstructured and paragraph
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justifications found in current forms to specify policy exceptions, context

information should be precise and verifiable in order to quickly determine

whether an exception is allowable or not.

What are the processing times for exceptions? Perhaps, the major problem

of the current approach towards policy exceptions is its inability to cope with

dynamic workflows that require near real-time deployments. Consequently, the

exception system should deploy exceptions dynamically and on-demand. Users

should be able to create (and tear down) exceptions in short timescales, avoid-

ing the delays caused by tasks such as discussions in committees, collecting

signatures for approval, scheduling meetings with IT staff, etc.

Backwards Compatibility. As noted earlier, varying degrees of security, yields

varying levels of user (in)convenience. An exception system should not require

a change in well-established legacy applications. Traditional tools such as SSH,

RDP, iperf, bwctl, rclone, etc. should be unaware of whether an exception is

being used or not. Likewise, traditional protocols used for route exchange and

network management (e.g. SNMP, OSPF) should operate as they usually do in

spite of the presence of policy exceptions. This will ensure that a campus net-

work with no exceptions will safely default to traditional security enforcement

mechanisms and no service is disrupted.

5.4 Implementing An Exception System

Taking into account the design considerations outlined above, we describe how those

requirements were handled in our implementation. Overall, the exception-based se-

curity model is divided in two main parts, first, an interface for network providers

to define trust (e.g. establish (on long time scales) which users are trusted to de-

fine exceptions for what portion of the flow space); and second, an automated re-
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quest/response system that applications or users can contact to ask that exceptions

be enabled in the network (on short time scales).

5.4.1 Defining Trust

A trusted flow is defined as a flow matching a portion of the flow-space controlled by

a trusted user. The first part of the on-demand exception system involves formulat-

ing high-level policies that define trusted flows–that is, the conditions that must be

satisfied for any connection to be associated with an exception. These decisions are

made on human timescales and often involve human validation of the policy. The key

to our approach is that trusted flows are defined before they are used. Campuses that

do support (static) exceptions do not manually validate every individual exception

as flows come in. Instead, they validate broad classes of traffic manually, and then

reconfigure the network to allow those flows to be created dynamically and automat-

ically by-pass middleboxes. Another difference of our approach from the traditional

enforcement of policies in middleboxes, is that the definition of trust policies asso-

ciates users/roles with specific flows—essentially to provide a “responsible party” for

each flow granted an exception. To allow delegation of responsibility, the mechanism

utilizes an authorization tree that arranges the set of all possible network flows, con-

ditions, and possible actions, into a hierarchy where each (child) node in the hierarchy

represents a subset of the flows, conditions and allowable actions, in the parent node.

One or more users (typically represented by a group) are then associated with each

node in the tree, giving them authority to define allowable exceptions for that por-

tion of the flow space. This way of handling trust, removes the burden from campus

IT staff (who are generally the root of the tree and have access to the whole net-

work flowspace) and allows users to delegate responsibility for certain flows to other

users, creating hierarchical authorization schemes consistent with the organization of

administrative responsibility in the Internet and within the institution.

114



www.manaraa.com

Exception Specification

The authorization tree is the place where information about the network users and

their network traffic is stored. This data structure validates exception requests against

pre-defined policies by users with varying levels of responsibility. Specifically, each

node in the tree identifies a portion of the possible flow space and has an associated

Exception Specification (ESpec) that contains high-level information that must be

satisfied by any exception request (e.g. who, what, when, where) as well as infor-

mation about the current status of the network (e.g., link congestion, overlapping or

conflicting exceptions currently installed, available resources, etc). While one could

envision ESpecs being written in a programming language as “plugins” to nodes in the

authorization tree, such a design would make it more difficult for network providers

to verify that a plugin is enforcing the policy correctly. As a result, ESpecs should

be specified in a high-level policy definition language (or specialized markup) that

could be easily compared against the intended policy exceptions without exposing the

complexity of low-level implementation details to deploy an exception. For example,

exceptions could be specified using human-readable sentences in PoLanCO (described

in Chapter 3) and be subsequently translated into the defined markup in order to

reconfigure the network. To provide an example of what an ESpec language might

look like, consider the markup syntax shown in Fig. 5.2.

Exception Request Type: Add | Remove | Update
Auth Credentials: User ID | App ID | Project ID

Match: <FlowSpec>
Action: Max Bandwidth Path | Min Latency Path | Min Hop Count Path | Block
Network Condition: Path Load < p | Time in [HH:MM, HH:MM]

Exception Duration: Flow Lifetime | n {days, hrs, mins, secs}

Figure 5.2: Example markup language for an ESpec

It is important to emphasize that the ESpec syntax presented in Fig. 5.2 may

be changed to include (or remove) other information that network providers might
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consider important to know from the users in order to deploy an exception. However,

it is critical that whatever information is included in an ESpec, it should not pose a

bottleneck in the deployment of an exception (e.g. triggering an e-mail sent to the

supervisor and waiting for her approval).

With the exception of the exception request type, which is the mechanism this

syntax uses to know the type of processing the automated system must follow, all

the ESpec information will be found in the nodes of the example authorization tree

described below and displayed in Fig. 5.3.

Navigating the Authorization Tree

The authorization tree of the exception system specifies the trust relationships among

multiple groups of network providers. Recall that the objective is to divide up the

flowspace in a hierarchical manner, delegating the task of defining allowable flow

exceptions to the (human) users responsible for those flows. In the context of a

campus network, the root of the authorization tree would be defined by the Campus

IT staff (Group: Campus IT) and would encompass all flows, actions, and network

conditions on campus (represented by the * character in each property of the ESpec).

In the example shown in Fig. 5.3, Campus IT delegates the definition of ex-

ceptions for secure copy and secure web (SCP and HTTPS) flows originating from

the College of Science (traffic: src=128.123.0.0/20,dstport=22,443]) to the IT staff

in the College of Science (Group: CoS IT). Likewise, Campus IT delegates to the

IT staff of the College of Communications possibility to deploy exceptions for all

incoming traffic whose destination is in the college, although only for short periods

of time (less than 10 minutes) between 9 and 10 am. Navigating down the tree, CoS

IT staff members might further delegate the definitions of exceptions for SCP and

HTTPS flows originating in the Biology Department (traffic: [src=128.123.0.0/24,

dstport=22,443]) to the IT staff in Biology (Group Biology IT). In this case, the
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exceptions may ask for maximum bandwidth or low latency paths but should only be

deployed in the network for the duration of the flow. For example, if the procedure

involves transferring a data set, the exception should be torn down once the data set

is successfully copied to the remote system and a TCP FYN packet is received at the

source. Moving further down, Biology IT staff might delegate the definition of scp

and https separately to different labs. For example, exceptions for traffic originating

in the Genomics Lab (traffic: [src=128.123.0.32/27, dstport=443]) are now limited

to bandwidth paths whose destination is Google Drive, Amazon Web Services S3

storage, or the local object store. The above indicates that exceptions for the Ge-

nomics lab are for data transfers for cloud storage systems, whereas the exceptions

of the Micro Biology lab are restricted on the deployment time rather than the final

destination.

Group:	Campus	IT
Traffic:	*
Actions:	*
Conditions:	*

Group:	College	of	Communications	IT
Traffic:	[dst=	128.123.48.0/20]
Actions:	NormalPath
Conditions:	
		Duration	<	10	minutes
		TimeOfDay=	9am-10am

Group:	CoS	IT
Traffic:	[Src=128.123.0.0/20,	dstport=22,443]
Actions:*
Conditions:*

Group:	Biology	IT
Traffic:	[Src=128.123.0.0/24,	dstport=22,443]
Actions:	MaxBandwidth,	LowLatency
Conditions:	
		Duration=FlowLifetime

Group:	Physics	IT
Traffic:	[Src=128.123.10.0/24,	dstport=22]
Actions:	ShortestPath	|	Block
Conditions:	
		Duration	<=	5	Hours

Group:	MicroBiology	IT
Traffic:	[Src=128.123.0.32/27,	dstport=22]
Actions:	LowLatency
Conditions:	
		Duration=FlowLifetime
		TimeOfDay=5pm	-	12am

Group:	Genomics	IT
Traffic:	[Src=128.123.0.32/27,	dstport=443,
Dst=Google	Drive,	AWS	S3,	Local	Object	Store]
Actions:	MaxBandwidth
Conditions:	
		Duration=FlowLifetime

Figure 5.3: An Exception system authorization tree
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5.4.2 Prototype System Architecture

With an authorization tree in place, where policies are defined by dividing the flows-

pace, the second part of the exception system addresses the need to automatically

change the network state (e.g. using Network Security Caps described in Chapter 4)

to deploy (or reject) the requested exception.

The automated component of the exception system accepts exception requests

from trusted users that include all the information contained in an ESpec. Such

requests are made via a REST API call (recommended) or through a web interface

form that requires the user to enter the details manually.

The information in the request is evaluated against the authorization tree to

determine if an exception is allowed (e.g., checking validity of credentials, ESpec

format, valid request type, matches the flowspec, etc). If the user requesting the

exception is trusted for the portion of the flow space to which the ESpec belongs,

the system creates the exception by invoking SDN network management actions (e.g.,

computing OpenFlow rules, resolving domain names, learning location of the affected

end-systems, etc) to deploy the exception to the appropriate network elements.

To test and evaluate our approach, an on-demand security system as described

above was developed and deployed in the University of Kentucky. The system, called

VIP Lanes, leverages SDN equipment found at multiple locations of the network

and deploys exceptions by interacting with the SDN controller and installing (or

removing) OpenFlow rules in the SDN-capable devices to configure the network to

handle exception requests.

VIP Lanes is a secure and distributed system composed of modular and special-

ized components that perform deployment of security exceptions for high-throughput

paths. The overall architecture and the interactions among components are shown in

Fig. 5.4 and described below.
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Figure 5.4: The VIP Lanes exception system architecture

VIP Lanes Server: The only point of contact for users and their applications to

request an on-demand exception is through the server which can be considered

the heart of the whole architecture. In order to protect the exception system

from external attackers or snooping within the network, the server only accepts

requests from campus internal IP addresses using encrypted HTTP requests.

Furthermore, as the point of entrance to the system, the VIP Lanes server

uses the campus’ authentication services (LDAP) to ensure that only univer-

sity members can request exceptions. Once a user has been authenticated, her

exception request, which can be specified either via a web interface or by call-
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ing the server’s REST API with a personal private key, is evaluated against

the authorization tree created by the network administrators. Upon success, a

deployment service is triggered to handle the request and translate the excep-

tion request into the appropriate configurations to the underlying network (see

Section 5.4.3). As described shortly, the translation process of the VIP Lanes

system requires querying detailed information about the network topology, in-

formation stored in a graph database. Because both the authorization tree and

the topology database store sensitive information about the network and the

policies, only local processes in the VIP Lanes server can reach them.

Topology Database: The deployment of exceptions for dynamic workflows require

the exception system to maintain an accurate view of the network. VIP Lanes

leverages current advances in NoSQL databases, particularly graph databases,

and uses the Neo4j graph database to store detailed up-to-date information

about the network based on information discovered by the SDN controller (e.g.

hosts, SDN switches), SNMP (e.g. routing capabilities, VLAN information,

MAC tables), and external data sources provided by the network administrator

(e.g. location of certain middleboxes). The collected information is significantly

broader than what SDN controllers provide. Graph databases are beneficial for

VIP Lanes due to the following reasons:

• the Cypher graph database language – a declarative query language for

Neo4j that simplifies the maintenance of topology data and provides an

intuitive syntax to construct constrained queries, including path compu-

tations;

• a direct mapping from a network topology (devices, links) into the same

representation in the database using nodes and edges. Further, the ability

to manipulate sets of labels assigned to the stored elements allows the
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representation of more complex network abstractions like active flows, IP

addresses, topology snapshots, and virtual network functions (e.g., NAT);

• the ability to store heterogeneous collections of data as properties of el-

ements in the network such as DPIDs for switches, MAC addresses for

hosts, and bandwidth capacity for links; and

• an intuitive GUI (Fig. 5.5) that allows network operators to view current

(and past) topology information, and to ask simple questions that are oth-

erwise tedious to implement in imperative programming languages (e.g.,

“what active flows go through switch X and avoid middleboxes of type T?”).

The prototype implementation is limited to the type of paths – e.g. widest,

fastest, etc. However, as presented in Chapter 6, it could be extended to

support exceptions and policies based on Neo4j queries.

Proxy Server The VIP Lanes proxy server acts as a gateway to access the SDN

controller. The security exception system is a novel approach towards collab-

orative policy enforcement between users and providers. For example, as con-

firmed by experimental results, security exceptions for the transmission of big

data transfers yielded a significant performance boost for campus researchers.

However, the system could also open up potentially dangerous new avenues

of attack—including attacks where an attacker could gain complete control of

the underlying programmable network by breaking into the VIP Lanes server

or the SDN controller. The fact that the exception system consists of several

components that interact with the SDN controller creates a reasonably broad

attack surface. Consequently, it is critical to secure the VIP Lanes exception

system itself by analyzing and tightly constraining each of the requests that

are sent to the controller. This is necessary because usually the NBI of exist-

ing SDN controllers enable a wide range of network management operations

that are not needed by the components of the exception system. Moreover, the
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access control mechanisms present in the controllers are very limited, to the

point that some of them (e.g. Floodlight, RYU, or POX) do not provide ac-

cess control for REST-based APIs whatsoever. The Aruba VAN [55] controller

used in the prototype supports very limited Role Based Access Control (RBAC)

that currently provides a single role with access to all controller features (i.e.

sdn-admin), giving far more control than is needed by the VIP Lanes exception

server.

If attackers were to gain access to the sdn-admin role, they could bring ports

up/down, capture any packet, inject traffic, overload the switches with control

messages—all being capabilities not needed by the VIP Lanes exception system.

To reduce the risk of attack but yet work with existing controllers, the VIP

Lanes Proxy is the only entity authorized to access the SDN controller’s APIs.

All requests to the controller must go through the VIP Lanes Proxy that inspects

the API calls and blocks any requests that invoke controller capabilities not

needed by the exception server. In addition, the VIP Lanes Proxy serves as a

certificate authority, signing client certificates (i.e. one for each component in

the VIP Lanes system) so that clients can be identified and associated with a

list of APIs they are authorized to invoke (i.e. a whitelist). (Note that if the

SDN controller has no access control, a firewall – either standalone or on the

controller, say via iptables – is needed to ensure packets cannot bypass the

VIP Lanes Proxy to reach the controller.)

The data structure used to implement the VIP Lanes Proxy whitelist function-

ality is a map of clients (identified by the Common Name (CN) field of their

signed certificates) to URLs (REST endpoints) that components are permitted

to use (including the HTTP commands they are allowed to use per endpoint).

Table 5.1 shows example whitelist entries, where the URLs are specified as

extended regular expressions to narrow down the action field. For example,
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the first entry enforces all VIP Lanes management calls to use vlanes-specific

structured cookie identifiers, isolating on-demand exceptions from the default

general policies controlling campus traffic, and obscuring the meaning of an

identifier from would-be attackers.

On a similar note, if an attacker compromises a component such as the moni-

toring system and then asks the SDN controller (via the VIP Lanes Proxy) to

make a change to the network, its connection to the VIP Lanes Proxy would

be ignored by the VIP Lanes Proxy, reducing the risk of an attack on the mon-

itoring system. Moreover, if the attacker requests a resource that it does not

have permission to (e.g. install a flow), its connection will be dropped, and

therefore the risk of corrupting the network operation is minimized. Note that

in this case, the attacker would still be able to use the customized statistics

API. However, this is a very limited read-only operation that would cause no

harm to the campus network.

The VIP Lanes Proxy default action for unauthorized requests is to ignore/drop

the connection. However, the VIP Lanes Proxy could take more complex actions

like reporting the incident to the network operator, or forwarding the traffic of

the compromised component to a honeypot to learn more about the modus

operandi of the attacker.

Table 5.1: Example whitelist entries in a VIP Lanes Proxy

Cert CN Field Authorized SDN Controller APIs HTTP Commands Allowed
vip-site.uky.edu ^/sdn/viplanes/ab01[a-f0-9]{12}$ GET, POST, DELETE

vip-site.uky.edu ^/sdn/v2\.0/of/datapaths/[^/]+/ports/[^/]+$ GET

vip-stats-db.uky.edu ^/sdn/stcl/stats/counters$ GET

SDN Controller Campus OpenFlow-enabled devices were paired with the Aruba

VAN SDN controller [55]. Besides the built-in modules that allow the SDN

controller to provide basic services like a web-GUI, REST APIs for simple

management and individual rule installation, discovery of OpenFlow-devices
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and end-hosts via DHCP or their own neighbor discovery protocol (BDDP),

the VIP Lanes exception system implementation consists of four management

modules:

• Management Module: Central module whose purpose is to process au-

tomated requests coming from the path computation service and add, up-

date or remove VIP Lanes from the network.

• Global Topology Module: Provides mechanisms to maintain versioned

snapshots of the existing connections in the network as well as a cache of

hosts learned via ARP messages.

• Statistics Collector Module: A multi-threaded application that peri-

odically queries/polls switches for byte/packet counters of the installed

VIP Lanes.

• DNS Sniffer Module: A helper module for cloud storage providers that

do not provide fixed IP addresses for data transfers (e.g. Google Drive,

Amazon S3). The module extracts resolved IP addresses from DNS re-

sponse packets issued by the storage provider before the transmission is

initiated.

SDN-Enabled Network The network where exceptions are deployed comprising

several NSCs (described in Chapter 4) as well as the end systems attached to

them. In order to join the SDN network (and instantiate VIP Lanes), buildings

(and departments) have to deploy at least one NSC-capable device—typically

a distribution and/or an access switch/router—and attach it to the SDN core

making sure that all general-purpose traffic is routed to the campus “normal

core” by default thus, preventing disruption of regular service to network users

(Fig. 5.8). Today, there are more than 14 buildings in our campus network

that have joined the SDN network and are eligible to deploy on-demand excep-
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tions, including departments of disciplines that historically have not involved

advanced IT tasks as part of their workflow but now benefit from the exceptions

that they are allowed to deploy. While the VIP Lanes system is currently stable,

complex tested networks needed to be created during the development phase of

the system [128]. The testbeds resembled (most of) the behaviors found in the

production network (e.g. inter-VLAN routing, IP address assignment, middle-

box bottlenecks) and ensure that security concerns were mitigated. There were

three iterations of the testbeds with increasing degrees of reality (and complex-

ity). The first deployment was in a controlled environment in GENI [42], made

entirely of software switches and therefore isolated from actual campus traffic.

Then, a laboratory testbed comprising hardware switches (Aruba 3500/3800)

that, in spite of running multiple OpenFlow (virtual) instances, gave us a closer

to reality scenario and allowed the control software to be tested before rolling

it out to production. Lastly, the system was tested in a limited portion of

the campus network that included systems located in the Computer Science

department.

5.4.3 Deploying Path Exceptions

Fig. 5.4 showed that after an exception is validated against the main authorization

tree an exception deployment service is triggered in order to deploy the user request

in the SDN network. In the VIP Lanes system, the path computation service deploys

exceptions. The service attempts to find a middlebox-free path with the information

provided by the user in the ESpec.

While the path computation could be written in a conventional imperative

programming language by calling existing graph libraries [129, 130], computing the

custom paths needed by VIP Lane would require tailoring the path computation al-

gorithms included in these libraries to handle networks made up of heterogeneous
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elements, which is an error-prone and time-consuming task for a network program-

mer/operator. Instead, we opted to leverage the built-in capabilities of the Neo4j

graph database to perform the path computation and topology data maintenance

within the database.

Figure 5.5: Neo4j GUI displaying the current topology, list of existing labels in the
database, and detailed information assigned to the highlighted “sdn” node

Currently, VIP Lanes is capable of calculating three types of paths: the fastest

(for low-latency requests), the widest(for high-bandwidth), and the shortest (for de-

fault routing). The fastest path query chooses the route based on the sum of latencies

of all links on the path; the widest path query chooses the route with the maximum

(greatest) bandwidth capability of the minimum-bandwidth link in a path; the short-

est simply chooses the path with fewest hop counts. While Neo4j provides a built-in
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function for the shortest path, two declarative queries to compute the fastest and

widest paths were constructed using Cypher. The queries are shown in Fig. 5.6.

Minimum Latency (fastest) Path

1 MATCH (src {ip: srcip})-[:version]-(current:CURRENT),

2 (dst {ip: dstip})-[:version]-(current)

3 WITH src, dst

4 MATCH p=(src)-[r:link*..{}]-(dst)

5 WITH p, reduce(Latency=0, r in relationships(p)) |

6 Latency + (r.latency)) as TotalLat

7 ORDER BY TotalLat

8 RETURN EXTRACT (n in nodes(p) | n.name ) AS names,

9 EXTRACT (r in rels(p) | r.vlan ) AS vlans,

10 ...,

11 EXTRACT (n in nodes(p) | labels(n) as labels,

12 LIMIT 1

Maximum Bandwidth (Widest) Path

1 MATCH (src {ip: srcip})-[:version]-(current:CURRENT),

2 (dst {ip: dstip})-[:version]-(current)

3 WITH src, dst

4 MATCH p=(src)-[r:link*..{}]-(dst)

5 WHERE ALL (n in NODES(p)

6 WHERE SINGLE(m IN NODES(p) WHERE n.name=m.name))

7 WITH p, EXTRACT (c in RELATIONSHIPS(p) | c.bw_cap)

8 AS bwidths

9 UNWIND bwidths AS b

10 WITH p, MIN(b) AS Bandwidth '

11 WITH p, length(p) AS Hops '

12 ORDER BY Bandwidth DESC, Hops ASC

13 RETURN EXTRACT (n in nodes(p) | n.name ) AS names,

14 EXTRACT (r in rels(p) | r.vlan ) AS vlans,

15 ...,

16 EXTRACT (n in nodes(p) | labels(n) as labels,

17 LIMIT 1

Figure 5.6: Cypher queries to compute the fastest and widest paths

All three types of paths are middlebox-free. Relevant middleboxes and non-

SDN devices present in the network (red nodes in Fig. 5.5) are identified in the
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database primarily through manually entered JSON-encoded configuration files that

contain descriptions of the interfaces present at every middlebox (e.g., MAC and

IP addresses, or neighbors). In some cases, these middleboxes may be discovered

by the controller as hosts, and consequently, the path computation service uses the

information stored in the configuration files to override the type of node that needs

to be stored in the database.

When a path query is run in Neo4j, it returns not only the nodes and edges

along the computed path, but also a selection of label and property data for each

node and edge. The topology information is vital to the successful construction of

custom exception paths because it describes what each OpenFlow switch must do in

the selected path; thus, enabling NFV in the SDN network. The control software

parses the topology information obtained from the database query and maps it into

OpenFlow rules that the SDN controller installs at every NSC along the path. The

generated rules ultimately dictate the behavior of every individual NSC for every

approved exception. Consequently, it is common to have “multi-function” switches

(like the sdn node in Fig. 5.5) that operate differently based on the location of the

end hosts in the computed path. For example, for on-campus transmissions (e.g., “a

transfer from the Computer Science department to the Physics department”) the sdn

node behaves as an L2/L3 switch that rewrites MAC addresses or VLAN tags for every

packet header in a flow. Additionally, that same switch functions (simultaneously)

as a stateless Network Address Translation device that hides IP addresses of the LAN

for flows going off-campus (e.g., “sending data to a national lab”). The flexibility of

graph databases helps store not only the de facto NAT table, but also the set of

public IP addresses to appropriately assign and produce OpenFlow rules that rewrite

the source and destination IP addresses of packet headers for outbound (i.e., from

the campus) and inbound (i.e., to the campus) exceptions going through the SDN

network.
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All path calculations require an accurate representation of current network

topology in the graph database to prevent packet drops or forwarding traffic to re-

stricted parts of the network. Since the network topology changes over time, the

changes must be recorded in a timely manner to ensure that the database topology

accurately reflects the current state of the actual topology. The up-to-date topology

information is maintained through the versioning algorithm described in the next

subsection.

5.4.4 Topology Versioning

Deploying exceptions requires an accurate view of the network. The challenge lies

in determining the frequency of topology data updates without compromising effi-

ciency. Ideally, the topology stored in the database Tdb should always match the

actual topology Tc (known by the controller) at any given time. However, proactively

maintaining Tc == Tdb at all times is expensive and adds unnecessary overhead: if no

exceptions are requested for a period of time, it is wasteful to continuously update

Tdb. An alternative approach is to check if Tdb == Tc before each path query is

executed and update Tdb if the condition is not met. The latter approach eliminates

unnecessary topology updates. However, it adds a user-noticeable delay to the path

calculation process as the topology grows. To tackle this problem, we implemented a

topology versioning algorithm. Fig. 5.7 illustrates how the mechanism operates when

components of the architecture trigger relevant events.

When the controller boots up or a new version of the topology module is

deployed (light-gray box), Tc represents the topology learned by the controller. A

random 64-bit number vc is the version of the topology stored in Tc. We define a flag

Tc req that indicates whether the topology has been requested by the path computation

service or not. Later, when the controller detects a topology event (yellow elements),

the version number vc is increased by 1 iff (1) the event is different from a host
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joining or leaving the topology—a frequent event based on a controller cache timeout

that is updated whenever the controller sees a packet from a host—and (2) the path

computation service has requested a newer version of the topology. Both conditions

ensure the algorithm avoids the situation where Tdb is constantly being updated even

though the path computation service does not currently need the latest version.

Figure 5.7: Topology versioning mechanism flow chart

When the database is initialized, Tdb is initialized to the current value of Tc.

Likewise, the database version number is initialized to the controller’s version number

(i.e., vdb = vc). Later, when VIP Lane request comes in via the path computation

service (white elements), the path computation service calculates the VIP Lane path

using Tdb and sends the computed path along with vdb to the controller to actually

install the SDN path. When the controller receives the request, it first checks if

vdb is equal to the vc (i.e., the topologies are in sync). If so, OpenFlow rules are

generated and the algorithm terminates. Otherwise, the controller realizes the path
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computation service needs a newer version of the topology (by setting Tc req = True),

and rejects the current path installation request.

As a result, a response message is built including the most recent values of vc

and Tc. Once the response gets back to the path computation service, current data of

Tdb and vdb is archived as an old version in the Neo4j database, and new snapshots are

added the Tc and vc values provided in the response. After this update, the process

starts over again and the path calculation is done on a more recent topology snapshot.

5.5 Evaluation

This section presents performance measurements collected when deploying on-

demand exceptions and sending/receiving data to common sites used by researchers

and scientists in the campus of the University of Kentucky. The factors affecting big

data transfers when the network is not the bottleneck are analyzed. The analysis

shows that the tool used to perform transfers has a significant impact on the final

performance of a transfer.

5.5.1 Throughput Measurements to ESNet Sites

In the first set of experiments, VIP Lanes exceptions were deployed to measure the

throughput at various locations on the campus network (Fig. 5.8) to reach sites that

are known to be used for research activities and therefore, can be trusted (i.e., are

allowed to by-pass campus network policy compliance checks).

Specifically, the bwctl [131] program measured the throughput from one of

the University of Kentucky campus libraries (KSL), the Computer Science depart-

ment (JFH), a newly built science building (JSB), and the department of agriculture

(AG) to ESnet sites located in various geographic regions of the United States (San

Diego, Washington D.C., and Chicago) and to the Data Transfer Node (DTN) at the

University of Kentucky which is located in the campus Science DMZ.
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Figure 5.8: SDN-enabled campus topology used to deploy exceptions

In order to eliminate the influence of variations in the client machine specifi-

cations used in each of the campus buildings, all the tests were run on a Macbook

Pro with an Intel Core i5 processor 2.4 GHz, 16 GB RAM, and an external Thun-

derbolt2 10G adapter attached to it. Additionally, jumbo frames (i.e. MTU 9000)

were enabled in the client machine as well as in all the VLANs used to perform the

transfers. Lastly, some variables of the system’s TCP/IP stack (e.g. TCP window

scale factor or receive buffer) were tuned following the recommendations published

by ESnet [132] to maximize the performance during each test.

For each site and building we measured two throughputs. First, the perfor-

mance obtained by letting the Normal campus network security appliances inspect

packets to enforce policies. Then, short-lived on-demand security Exceptions were de-

ployed to send data from the laptop to the trusted sites and the performance over the

middlebox-free exception path was measured. Note on rule installation times:

We observed that on average, it takes 314 ms to deploy each exception in the data

plane. Since deploying an exception happens as part of a big data transfer, it has
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almost no impact on the performance.

Table 5.2 shows the data collected after running the above experiments. At a

first glance, it is clear that using the VIP Lanes exception mechanism researchers in

most cases could benefit from a performance boost from tens of megabits per second

(under normal conditions) to multiple gigabits per second (using exceptions). Un-

surprisingly, the improved throughput was affected by the geographic location of the

trusted site, e.g., speeds to the DTN reached close to 7.2 Gbps whereas measure-

ments at San Diego (on the opposite coast of our campus) were below the 700 Mbps

mark. Nonetheless, as can be seen in Fig. 5.9, the speedup factor, i.e., how much

faster the throughput is by using exceptions, was not necessarily bound to geographic

location. For example, the improvement from AG to the DTN was only of 11x the

normal throughput, whereas from that same location to Chicago ESnet site the factor

jumped to 50x. In most of the cases, the speedup factor was higher than 20x with

only two data points below.

Note that for certain workflows (e.g. Big Data transfers) the specs of the

client machine are expected to be more powerful than those of the laptop used to run

the tests. Therefore, these results could serve as a baseline or reference point of the

potential improvements that can be obtained using more capable systems.

5.5.2 Exceptions for Transmissions to an External Cloud Provider

Transferring big data to various cloud storage providers is becoming increasingly im-

portant in recent years. There are multiple factors affecting the performance of big

Table 5.2: Throughput from four campus buildings to trusted sites

Site KSL JFH JSB AG
San Diego, CA 31.3 (669) 28.8 (671) 31 (669) 19 (663)

Chicago, IL 182 (3959) 36.4 (3129) 95.4 (3974) 74.1 (3707)
Washington, D.C. 70 (1289) 29.4 (1400) 69.4 (1570) 56.7 (1532)

DTN 300 (7120) 67.7 (7140) 320 (7200) 644 (7123)
*The numbers are shown as Normal (Exception) throughput in Mbps
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Median

Figure 5.9: Speedup factors at different sites using exceptions

data transfers that range from the capabilities of the end-system, the cloud storage

provider policies, the network infrastructure, the size of the data, the geographic lo-

cation, the data transfer tool, and many more. Analyzing the optimal combination

of parameters is out of the scope of this dissertation but we presented results in [133]

where we showed that Amazon S3 and Google Drive provided the best performance

overall and the rclone data transfer tool provided the best performance to its con-

figurability and back-off mechanism to efficiently and reliably move data to external

stores. We also identified that rclone outperforms all other cloud transfer applica-

tions. Consequently, we have recommended rclone to researchers on campus as the

tool of choice. Among cloud storage providers, Google Drive has become very popu-

lar among researchers both because of its good performance and cost (free unlimited

storage). Therefore, the analysis in this dissertation will focus on using rclone to

transfer data from campus file servers and desktops to Google Drive.

This section explores performance as it relates to the location of the re-

searcher’s machine in the campus network and the tool parameters used in the trans-
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fer. Two types of end-nodes where researchers “live and work” were analyzed: (file)

server nodes that have substantial computing power, and desktop nodes that are

more resource constrained. In both cases, nodes are located deep inside the campus

network. Similar to the previous experiments, the major problem with data transfers

transfers is that the path to the cloud has to go through various security middleboxes.

The Problem of Moving Targets

While in the previous measurements the ESnet sites and the campus Data Transfer

Node (DTN) had fixed IP addresses, transferring data to both Amazon S3 and Google

Drive is challenging because they implement moving target defense practices [134]

that dynamically change the destination IP address of the cloud storage system. This

situation gets more complicated when the tool used to transfer data can issue multiple

parallel connections (e.g. rclone) for an individual workflow because it is necessary

to obtain the destination IP for every individual connection, deploy an exception for

that connection, and finally start the transfer. In addition, for high-end machines that

have a large number of CPUs, the likelihood of some connections resolving to the same

IP address significantly increases. In such cases, only the source port number selected

by the data transfer tool would differentiate the individual connections. Although

with Amazon S3 is possible to circumvent this problem by preemptively querying the

list of subnets assigned to a particular region (e.g. east-1) [135] and use the returned

ranges as part of the OpenFlow rules, other storage systems such as Google Drive

do not officially advertise the ranges of public IP addresses used to store files in the

cloud.

In order to develop a solution to this problem, we inspected the packet cap-

tures from a host pushing data to Google Drive using rclone with multiple parallel

connections. We observed that, as part of the initialization process, multiple DNS

request/reply packets were generated before the actual TCP sockets were created. In
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fact, the tests showed that in general the number of DNS calls was equivalent to the

number of parallel connections. By further inspecting contents of the DNS packets,

we realized that the A RECORD field in the DNS reply packets contained a list of IP

addresses offered by the remote storage system to start the transmission; in 99% of

the cases, the first IP was always picked by the application.

CNAME in
Storage System

Map?

no

yes

Release DNS
Packet

Extract resolved IP
from A RECORD

Extract Contents
of DNS Packet

Request
Exception

Received 
notification
from VMM?

no
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Build OpenFlow rules
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Send OpenFlow rules to
switches

...
Collect switch
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  googlehosted.l.googleusercontent.com
}
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}
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HOST

SDN-enabled Network
DNS
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Switch Flow Table

SDN Controller

Data Plane

...

Figure 5.10: DNS Sniffer module packet processing to deploy exceptions per connec-
tion

A DNS sniffer module for the SDN controller was developed to leverage the

above findings, consequently, allowing researchers to dynamically deploy exceptions

for data transfers to storage systems with no fixed IP addresses. Fig. 5.10 shows all

the events and processes required to deploy such “on-the-fly” exceptions.

To start off, whenever there is a request for an exception to a cloud storage

system (say “Google Drive”), an “intercept rule” R is added to the flow table of the

closest OpenFlow switch connected to the host initiating the transfer. The rule has
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a short timeout (less than two minutes), a higher priority than any other rule, and

instructions to send to the controller all DNS reply packets (source port 53) whose

destination address is the one of the host (1.2.3.4 in the figure). Then, the user may

initiate the transmission with rclone (or any other tool) possibly issuing p parallel

connections. As mentioned earlier, the tool generates p DNS request packets that are

forwarded to a valid DNS server using the “normal” campus network. Note that it

is irrelevant whether the DNS server is local or external (e.g. using Google’s DNS

8.8.8.8). Once the DNS server issues a reply, R instructs the switch to send the

packet to the controller where its contents are processed by the DNS sniffer module.

Upon receipt of the packet, the controller extracts information from the packet such

as the Canonical Name (also referred to as CNAME) of the destination host and the

A RECORD containing the list of IP addresses that can be used to reach the remote

site. Once the information is stored in memory at runtime, the module must check

whether the extracted CNAME is in an authorized list of storage system mappings.

For example, for an exception to Google Drive the only two accepted CNAME val-

ues are googleapis.l.google.com and googlehosted.l.googleusercontent.com.

The validation step is necessary since R intercepts all DNS responses issued to the

host during a two minute window. The DNS responses could possibly include mes-

sages sent to services other than the data transfer tool (e.g. a web browser, an SSH

connection). For non-data-transfer cases, the DNS reply is simply sent back to the

switch and then forwarded to the host for normal processing.

However, if the CNAME is included in the authorized list of storage system

mappings, then the first IP address in the A RECORD is included in the request issued

to install an exception to the VIP Lanes Management Module (VMM). The VMM

prepares the corresponding OpenFlow rules, stores in a local cache the requested VIP

Lane, and submits the rules to the NSCs that will carry the traffic of the exception.

In order to prevent a race condition between the installation of an exception and
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the start of a connection under the “normal” path, the DNS sniffer module does

not send the packet back to the host until the exception is successfully deployed

in the SDN network (or the VMM confirms there is already an exception with the

resolved IP). The rules are considered installed when the DNS sniffer module receives

a notification from the VMM. Lastly, the controller releases the DNS response packet

back to the host, and the transmission starts making use of the deployed exception

path. Note that the extra DNS processing adds an additional delay to the delivery

of DNS response packets. However, we observed that processing each DNS packet

takes less than 500 milliseconds in the worst case, which is significantly less than the

default timeout of 5 seconds applications use to reissue another DNS request to the

DNS server.

By pairing rclone with an SDN-enabled VIP Lanes campus network and tun-

ing the rclone parameters (e.g. number of parallel transfers, chunk size), researchers

are able to obtain significantly better throughput from end system nodes, sometimes

comparable to the performance from the DTN, even from dedicated server nodes and

desktop nodes deep in the campus network to remote storage systems that dynami-

cally change their IP addresses using moving target practices.

5.5.3 Experiment Setup

For this set of experiments two more source nodes were added and are shown in

Fig. 5.11 as Aztec Desktop and Flint Server. The characteristics of the nodes are as

follows:

• Flint Server: A server machine with a high-speed path (and fewer hops) to the

Internet. It has a high-end processor (an Intel(R) Xeon(R) CPU E5-2650L v3) with

48 cores running at 1.80GHz, 180 GB of RAM, and a 10 Gbps network interface

with jumbo frames (i.e. MTU 9000) enabled.
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• Aztec Desktop: A desktop workstation in a computer laboratory running Ubuntu

16.04. The node has an Intel(R) Core(TM) i5-4570S processor with 4 cores running

at 2.90GHz, 8 GB of RAM, a 1 Gbps network interface with jumbo frames enabled.

Figure 5.11: Location of source nodes in campus network

The datasets used for the experiment have varying file sizes and number of

files. Specifically, three datasets, each consisting of one single file varying in size: 1GB,

10GB, and 100GB. In addition, each of the files was divided into 10 and 50 equally-

sized files using the split command line utility to obtain six additional datasets, for

a total of nine data sets.

The datasets were uploaded from all three locations (i.e. Aztec Desktop, Flint

Server, and DTN) to Google Drive 4 times and downloaded from Google Drive to

139



www.manaraa.com

these locations also 4 times. The throughput was recorded once the transmission

finished. For every push and pull operation, the numbers of parallel connections (4,

8, 16 or 32) and chunk size parameters (4 MB, 8 MB, 16 MB and 32MB) were changed

as well. Due to the 750GB upload limit per account imposed by Google Drive, the

tests for the 100 GB data sets were limited to only 16 and 32 transfers.

5.5.4 Results

Viplanes Boost: By enabling high-speed paths for big data science flows, servers

can, at least in some cases, achieve speeds close to their maximum capacity and often

similar to speeds obtained on the high-end DTN node which are sufficient to move

big data to a cloud storage system very quickly. For example, as shown in Table 5.3,

some of the measurements recorded speeds greater than 700 Mbps from the Aztec

Desktop machine, which is approaching the theoretical maximum of 1 Gbps, and is

about 5-7x faster than going through the normal campus network (∼100-150 Mbps),

and orders of magnitude faster than the speeds recorded by others [136] (∼600 KB/s

in the best case) when moving data to other cloud storage systems from a campus

machine.

Table 5.3: Upload and download speeds by location (in Mbps)

Location-Dir Mean Std Dev Maximum
Aztec Desktop-up 395 159 734

DTN-up 854 903 5664
Flint Server-up 437 381 2164

Aztec Desktop-down 385 176 768
DTN-down 1839 1226 5204

Flint Server-down 1420 799 3986

Chunk Size: When uploading large files, it is often useful to chunk the file

into multiple smaller pieces as retransmissions incur in less overhead ( in case of

retransmission only a small piece is retransmitted). rclone allows the user to specify

the size of each generated chunk to be loaded in memory by the thread in charge
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of transmitting the file. Fig. 5.12 shows six summary statistics (i.e. minimum, first

quartile, median, mean, third quartile, and maximum) for throughput (in Mbps) for

4 different chunk sizes for the DTN, Flint Server, and Aztec Desktop. Based on the

figure, we can observe that the mean values increase with chunk size. Increasing the

chunk size, however, had less impact on throughput than increasing the number of

parallel transfers. For example, for the DTN, when the the chunk size changes from

4, to 8, to 16 and then to 32 MB, the mean throughput changes from 556, to 727,

to 1046 and then to 1062 Mbps, respectively, whereas when the number of parallel

transfers changes from 4, to 8, to 16 and then to 32, the mean throughput changes

from 425, to 651, to 1077, and then to 1187 Mbps, respectively.

Figure 5.12: Upload speed by chunk size (log scale)

Parallel Connections and Number of Cores: Tools that were able to

create multiple parallel connections yielded better performance in all storage systems.

The connections parameter is particularly important if one wants to take advantage

of the core count found in high-end machines (e.g., the DTN). As seen in Fig. 5.13,

using a lower number of threads than the number of cores produces slower speeds for

the capabilities of the source node. The influence of this parameter is more noticeable

at the DTN and Flint Server for both uploads and downloads. For example, the
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(a) Upload

(b) Download

Figure 5.13: Throughput by number of connections (log scale)

maximum throughput from the Flint Server while pushing data to Google Drive

measured 617 Mbps, 1013 Mbps, 1608 Mbps, and 2164 Mbps when increasing the

number of parallel transfers from 4 to 8 to 16 to 32 respectively. A similar behavior

can be seen while analyzing the DTN as both nodes have >= 32 cores.
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5.6 Final Remarks

In this chapter we presented a new approach towards security enforcement based

on the observation that policy exceptions provide the means for network users and

network providers to collaboratively deploy legitimate network configurations tai-

lored to specific workflows. Short-lived, on-demand, fine-grained exceptions provide

an opportunity for trusted (and authenticated) users to provide context about their

traffic using a structured markup language, and in return get special treatment from

network providers. The approach significantly improves on the current manual and

time-consuming procedure users have to go through to request a policy exception for

their dynamic workflows on campus that allow static exceptions (noting that many

do not provide exceptions of any sort). Further, we described how new advances in

programmable networks enable the possibility to develop control software that can

(1) create trust relationships via delegation of the network flowspace across localized

network providers, and (2) automate the deployment of an exception by reconfiguring

the network to satisfy the needs of the user. We described a prototype implementa-

tion of the security exception mechanism to improve the high-speed big-data transfer

in our campus network, what measures were taken to secure the system, and how we

were able to lock-down exceptions to individual flows following the principle of least

privilege. Our experimental results demonstrate that the transfer rate of trusted users

can be improved significantly when on-demand exceptions allow them to bypass mid-

dleboxes which can remain as the mechanism to enforce policies on general-purpose

traffic.
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Chapter 6. Conclusion and Future Work

6.1 Dissertation Summary

This dissertation described systems and concepts that address problems associated

with the definition, deployment, and enforcement of network security policies and

their exceptions on campus networks. We introduced PoLanCO, a human-readable

language that allows network operators to write technically-precise statements that

are further translated into device configurations without network operator interven-

tion. We presented the building blocks of PoLanCO including the emerging Software-

Defined Networking architecture, state-of-the-art decision systems used in business

management (Business Rule Management System), and a Drools translation function

T (w) that transforms human-readable words into valid executable code. We pre-

sented a series of examples where operators can write PoLanCO statements derived

from imprecise Acceptable Use Policy (AUP) documents. Moreover, we showed that

the derived PoLanCO statements can enforce policies at various locations of a campus

network. We also described the concept of Network Security Caps (NSCs), a security

policy enforcement layer embedded in network devices (e.g. switches, routers) that

does policy compliance checks on incoming network traffic prior to regular device

packet forwarding. In order to achieve a seamless deployment that does not disrupt

ongoing communications, we realized NSCs via OpenFlow-hybrid devices that sup-

port the NORMAL port. We showed that NSCs separate policy enforcement from

end system and device functionality. Consequently, NSCs can help protect against

server misconfigurations that might introduce policy violations and security exploits

in the network. Lastly, we proposed a novel approach towards network security based

on the notion of trusted on-demand security exceptions. We developed a system that

brings network providers and users together in order to dynamically adapt the net-
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work to user-specific workflows. On one hand, providers get to know what users

are doing in the network because users share information about their traffic. On the

other, users get a preferred treatment for (some of) their flows when they justify their

need for an exception to network providers. Our experiments indicated that short-

lived fine-grained security exceptions improve the throughput of researcher workflows

by more than an order of magnitude.

6.2 Future Work

The systems introduced in this work to improve the definition, enforcement, and

management of network security policies can be extended in the following ways:

PoLanCO Policy Management Extensions: The Policy Language for Campus

Operations (PoLanCO) presented in Chapter 3 leverages basic features of

the Drools Business Rule Management System to write human-readable and

technically-precise statements. At present, PoLanCO statements do not

support more complex policy management features such as policy scheduling

or distributed policy definition. The language/grammar of PoLanCO can be

extended to include additional Drools-specific “rule attributes” that provide

enhanced business rule management. For example, the attribute date-effective

could allow a policy rule to be activated in the future (e.g. scheduling revised

student-related policies effective at the start of the next semester); likewise,

date-expires could be used to specify the times when a policy cannot be active

(e.g. forbid all access to a server during maintenance windows); and lastly, the

attribute agenda-group could be incorporated to control the order of execution

of groups of PoLanCO statements (e.g. IT policies are enforced first, then

departmental policies, and lastly authorized exceptions).

Reverse Engineering Policies from Configurations: Section 3.4 described the
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translation pipeline (i.e. set of steps) that transforms an AUP-like document

(high-level) into executable Drools code that contacts SDN controllers to push

OpenFlow rules that enforce the policy (low-level).

With the introduction of PoLanCO as a middle-layer between low-level config-

urations and high-level policies, a bottom-up translation becomes feasible and

could be used for policy verification. For example, given the current state of

all NSCs rules in the network, it could attempt to construct the PoLanCO

statements that generated the rules. Then, the reverse engineered PoLanCO

statements could be compared with the original statements to verify if there is

a discrepancy that could pose a security risk to the network.

Enforcement Beyond OpenFlow: The described prototype systems leverage

SDN-capable networks and use OpenFlow as the principal mechanism for

policy enforcement. However, not all university campuses have (or allow

the deployment of) SDN-enabled equipment in their network infrastructure.

Instead, the concepts and systems introduced in this dissertation could be

adapted to other types of centralized systems that allow IT groups to push

configurations to several network devices. For example, Cisco’s Digital Network

Architecture [19] uses a controller to troubleshoot, configure, and manage

Cisco devices in a network (many campus networks use Cisco equipment across

their infrastructure). Likewise, access to Wireless Access Points controllers

could extend the capabilities of PoLanCO and on-demand security exceptions

to enforce policies on wireless equipment and connections.

Integration of Graph Database Queries: In the systems described in this work,

the Neo4j graph database stores network information about the discovered

topology. Besides traditional data storage, the prototype exception system ex-

ecutes Neo4j queries that compute three middlebox-free paths (i.e. the widest,
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the fastest and the shortest paths) for the installation of on-demand exceptions

for big data transfers. However, we argue that more queries can be constructed

to express various types of policies (or on-demand exceptions) due to the avail-

ability of a large amount of information about the network. For example, path

queries that avoid specific portions of the network such as finding a path from

the machines in a department X to the Internet such that traffic never goes

through the medical campus; querying all the nodes that can be reachable on a

particular VLAN; or enforcing paths that must go through a series of middle-

boxes (e.g. Firewalls, IDS/IPS, load balancers, etc.).

Traceability: The introduction of PoLanCO into the process that translates ac-

ceptable use policies into configurations allows for the use of natural language

processing tools and techniques to trace if an Acceptable Use Policy is repre-

sented in the PoLanCO statements.
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Appendix A Acronyms

ACL Access Control List

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

AUP Acceptable Use Policy

BGP Border Gateway Protocol

BRMS Business Rule Management System

BYOD Bring Your Own Device

CIO Chief Information Officer

CLI Command-Line Interface

CTO Chief Technology Officer

CapEx Capital Expenditures

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

DMZ Demilitarized Zone

DNS Domain Name System

DoS Denial of Service

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DSL Domain-Specific Language

DTN Data Transfer Node

ESpec Exception Specification

FTP File Transfer Protocol

GENI Global Environment for Network Innovations
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GUI Graphical User Interface

HPC High-Performance Computing

HTTPS HTTP over TLS

HTTP HyperText Transfer Protocol

IBGP Internal Border Gateway Protocol

IDPS Intrusion Detection and Prevention Systems

IDS Intrusion Detection System

IPSec IP Security

IPS Intrusion Prevention System

IS-IS Intermediate System to Intermediate System

ISP Internet Service Provider

IT Information Technology

IT Information Technology

IoT Internet of Things

JSON JavaScript Object Notation

L2TP Layer 2 Tunneling Protocol

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LLDP Link-Layer Discovery Protocol

NAT Network Address Translation

NFV Network Function Virtualization

NOS Network Operating System

NSC Network Security Cap

NSF National Science Foundation

OSD Object Storage Daemon

OSM Object Storage Monitor

OSPF Open Shortest Path First
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OS Operating System

OVS Open vSwitch

OpEx Operational Expenditures

PBR Policy-Based Routing

PPTP Point-to-Point Tunneling Protocol

PWC Policy Writing Committee

QoS Quality-of-Service

RADIUS Remote Authentication Dial-In User Service

RAS Remote Access Server

RCP Routing Control Platform

RDP Remote Desktop Protocol

RIP Routing Information Protocol

SDK Software Development Kit

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

SSH Secure Shell

SSL Secure Sockets Layer

STP Spanning-Tree Protocol

TLS Transport Layer Security

ToS Type of Service

URI Uniform Resource Identifier

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

WAP Wireless Access Point
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D. Kostic, and R. Riggio, “Netide: First steps towards an integrated
development environment for portable network apps,” in Proceedings of the
2013 Second European Workshop on Software Defined Networks, ser. EWSDN
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 105–110.
[Online]. Available: http://dx.doi.org/10.1109/EWSDN.2013.24

[52] S. Rivera, Z. Fei, and J. Griffioen, “Raptor: A rest api translator for openflow
controllers,” in 2016 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), April 2016, pp. 328–333.

[53] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to express and automat-
ically reconcile network policies,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 29–42.

[54] D. Comer and A. Rastegarnia, “OSDF: an intent-based software defined net-
work programming framework,” CoRR, vol. abs/1807.02205, 2018.

[55] H. P. Enterprise, “Aruba van sdn controller,” https://community.
arubanetworks.com/t5/Aruba-Applications/ct-p/ArubaApplications, 2019.

[56] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,”
Internet Requests for Comments, RFC Editor, RFC 7047, December 2013.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7047.txt

[57] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” Internet Requests for Comments, RFC
Editor, RFC 6241, June 2011. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc6241.txt

[58] “A Simple Network Management Protocol (SNMP),” Internet Requests
for Comments, RFC Editor, RFC 1157, May 1990. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1157.txt

[59] Cisco, “Opflex: An open policy protocol white paper,” https:
//www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/
application-centric-infrastructure/white-paper-c11-731302.html, 2014.

[60] P. Shi, S. Rivera, L. Pike, Z. Fei, J. Griffioen, and K. Calvert, “Enabling shared
control and trust in hybrid SDN/legacy network,” in 2019 28th International
Conference on Computer Communication and Networks (ICCCN), July 2019,
pp. 1–9.

[61] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, 2000, aAI9980887.

155

http://dx.doi.org/10.1109/EWSDN.2013.24
https://community.arubanetworks.com/t5/Aruba-Applications/ct-p/ArubaApplications
https://community.arubanetworks.com/t5/Aruba-Applications/ct-p/ArubaApplications
http://www.rfc-editor.org/rfc/rfc7047.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html


www.manaraa.com

[62] grpc, “A high-performance, open-source universal rpc framework,” https://
grpc.io/, 2019.

[63] O. N. Foundation, “ONF launches SDN northbound interface work-
ing group,” https://www.opennetworking.org/news-and-events/latest-news/
onf-launches-sdn-northbound-interface-working-group/, 2013.

[64] ——, “OpenFlow Switch Specification,” https://www.opennetworking.org/
wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf, 2012.

[65] H. P. Enterprise, “Hp network protector sdn application,” https://support.hpe.
com/hpsc/doc/public/display?docId=emr na-c04626978, 2014.

[66] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein, “En-
forsdn: Network policies enforcement with sdn,” in 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), May 2015, pp.
80–88.

[67] J. N. Bakker, I. Welch, and W. K. G. Seah, “Network-wide Virtual Firewall
Using SDN/OpenFlow,” in 2016 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN), Nov 2016, pp. 62–68.

[68] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing Soft-
ware Defined Networks,” in Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, pp. 1–13.

[69] M. Rezvani, A. Ignjatovic, M. Pagnucco, and S. Jha, “Anomaly-free policy
composition in software-defined networks,” in 2016 IFIP Networking Confer-
ence (IFIP Networking) and Workshops, May 2016, pp. 28–36.

[70] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: Enforcing
network-wide policies in the presence of dynamic middlebox actions,” in
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
19–24. [Online]. Available: http://doi.acm.org/10.1145/2491185.2491203

[71] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 27–38. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486022

[72] A. Lara and B. Ramamurthy, “Opensec: Policy-based security using software-
defined networking,” IEEE Transactions on Network and Service Management,
vol. 13, no. 1, pp. 30–42, March 2016.

156

https://grpc.io/
https://grpc.io/
https://www.opennetworking.org/news-and-events/latest-news/onf-launches-sdn-northbound-interface-working-group/
https://www.opennetworking.org/news-and-events/latest-news/onf-launches-sdn-northbound-interface-working-group/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04626978
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04626978
http://doi.acm.org/10.1145/2491185.2491203
http://doi.acm.org/10.1145/2486001.2486022


www.manaraa.com

[73] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using openflow
in dynamic cloud networks (or: How to provide security monitoring as a service
in clouds?),” in Proceedings of the 2012 20th IEEE International Conference
on Network Protocols (ICNP), ser. ICNP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 1–6.

[74] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson, “Fresco:
Modular composable security services for software-defined networks,” in 20th
Annual Network & Distributed System Security Symposium. NDSS, 2013.

[75] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: Towards an operating system for networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008. [Online].
Available: http://doi.acm.org/10.1145/1384609.1384625

[76] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly detection
using software defined networking,” in Recent Advances in Intrusion Detection,
R. Sommer, D. Balzarotti, and G. Maier, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 161–180.

[77] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm
infections,” in Recent Advances in Intrusion Detection, E. Jonsson, A. Valdes,
and M. Almgren, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 59–81.

[78] M. M. Williamson, “Throttling viruses: restricting propagation to defeat mali-
cious mobile code,” in 18th Annual Computer Security Applications Conference,
2002. Proceedings., Dec 2002, pp. 61–68.

[79] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network
traffic using maximum entropy estimation,” in Proceedings of the 5th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’05. Berkeley,
CA, USA: USENIX Association, 2005, pp. 32–32. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251086.1251118

[80] M. V. Mahoney, “Network traffic anomaly detection based on packet bytes,”
in Proceedings of the 2003 ACM Symposium on Applied Computing, ser. SAC
’03. New York, NY, USA: ACM, 2003, pp. 346–350. [Online]. Available:
http://doi.acm.org/10.1145/952532.952601

[81] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using network
monitoring and sdn control functions,” in 2014 IEEE Network Operations and
Management Symposium (NOMS), May 2014, pp. 1–9.

[82] L. Dridi and M. F. Zhani, “Sdn-guard: Dos attacks mitigation in sdn networks,”
in 2016 5th IEEE International Conference on Cloud Networking (Cloudnet),
Oct 2016, pp. 212–217.

157

http://doi.acm.org/10.1145/1384609.1384625
http://dl.acm.org/citation.cfm?id=1251086.1251118
http://doi.acm.org/10.1145/952532.952601


www.manaraa.com

[83] S. Shirali-Shahreza and Y. Ganjali, “Flexam: Flexible sampling extension for
monitoring and security applications in openflow,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 167–168.

[84] C. V. Neu, C. G. Tatsch, R. C. Lunardi, R. A. Michelin, A. M. S. Orozco,
and A. F. Zorzo, “Lightweight ips for port scan in openflow sdn networks,” in
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Sympo-
sium, April 2018, pp. 1–6.
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